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BLOCK —I:
STATISTICAL THERMODYNAMICS

Unit-1: Statistical thermodynamics

Structure

1.0 Introduction

1.1  Objectives

1.2  Maxwell — Boltzmann Distribution

1.2.1 Maximization of thermodynamic probability
1.2.2 Application of Maxwell — Boltzmann law
1.2.3 When the energy levels are degenerate
1.3  Negative Kelvin Temperature

1.4  Check Your Progress

1.5 Answers to check your progress questions
1.6 Summary

1.7 Keywords

1.8 Self-assessment questions and exercises
1.9  Further readings

1.0 Introduction

In thermodynamicsstatistical thermodynamicsis the study of the
microscopic behaviors of thermodynamic systemsguphobability theory.
Statistical thermodynamics, generally, provides aolecular level
interpretation of thermodynamic quantities suctwask, heat, free energy,
and entropy. Statistical thermodynamics was borb8R0 with the work of
Austrain physicist Ludwig Boltzmann, much of whielas collectively
published in Boltzmann's 1896 Lectures on Gas Theor

1.1 Objectives

After going through this unit, you will be able to:
» Understand about the statistical thermodynamics
« Understand the Microscopic behaviour of thermodyicaystem
using probability theory.
* Explain the concept of Negative Kelvin Temperature
» Explains the microstates and configuration

1.2 Maxwell — Boltzmann Distribution

Postulates:

1. The system considered is an isolated system opertient, non
interacting identical particles without spin in dduium at a
definite temperature.

2. The particles are distinguishable

Unit -1 Statistical
Thermodynamics
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Unit -1 Statistical I3 There is no restriction to the number of particles

nit -1 Statistica

Thermodynamics which may occupy any given quantum state. Let us consider
any ideal gas containing N identical distinguishable

independent particles. let at any instant
NOTE no particle have energyoE

n; particles have energy E

n; particles have energy E

Total number of particles in the system is

No+N1+N2 + g+ ---------- n+---=

Total number of particles in the system is assutoed
be constant and hence

Son =0 — )

This is the first condition of constraint.

4. Total energy possessed by all the molecules E is

00

E=En,+En+ +En+ =) En

i=0

5. Total energy is constant and hewage= 0

Self-Instructional Material



Z;:Eiani =0- (2)

This is the second condition of constraint.

6. he system is considered at statistical equilibraurd hence
thermodynamic probability will be maximum.

1.2.1Maximization of thermodynamic probability
For Non - degenerate energy levels:

The probability of distribution of particles amorige quantum states ig
proportional to the number of different ways in ahithe molecules can be
arranged under the specified conditions. The nunalbewvays in which ‘N’
distinguishable particles can be arranged in diffeenergy levels such that n
particles are in the ground state , n, in the rkin the 2% and so is given by

N!
W= —X constant

!
i=0

InW=InN!-In( 7zn!) + constant
i=0

Applying stirlings approximation formula

INNI=NInN-N

InW=NInN-N->In(n!) + constant
i=0
=NInN-N-Y (nhn -n)+congant
1=0

=NInN-N->nlnn+> n +congant
i=0 i=0

Unit -1 Statistical
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When the system attains statistical equilibriumrehwiill be
most probable distribution and thermodynamic prdtgbwill
be maximum and hence variation in W

i ow ordlnw is zero.
Jnw =0

dIn w=9(NIn N)-a(>_n Inn) +congant
i =0

:O—Z(n.—lﬂnn)anzo
i=0 'n b

:—Zln(ni)ani=0 Zan =0
(or)

iln( n)on=0 - (3)

This is the 3 condition of constraint. For a system of maximum
thermodynamic probability and for a stem in stat&t equilibrium
condition 1, 2&3 must be satisfied.

When there are more than two conditions, lagrangiathod of
undetermined multiplers is used to solve the prable

Equation (1) is multiplied by, equation (2) is multiplied by and
combined with equation (3) we get

o/Zani + ,BZ Eon + Zln( n)on =0

Z(a+/£i+ Inn)on =0

Since, the variationgny, onz, ons etc are independent of each other,
provided the conditions (1) & (2) are satisfiecg to- efficient ofons’'s
must be zero an¢hi#0



a+[E+Inn=0

ni =Ce_[E - +,u/RT.e—E,KT

The factor € <7 is called Boltzmann factor and R is the Boltzmann
constant, the expression

n=e7e" =expl"" exp™’is called Maxwdl — Boltzmann

distribution law for the system having N distindqwable particles
distributed in non degenerated energy levels.

The total energy or any individual form of energygiven as

E(tota)= EelectEvib+ Erot+ Etrans

1.2.2 When the energy levels are degenerate

The number of ways in which ‘N’ distinguishable fi@des can be
arranged in different energy levels having the degacy g, n, in the first
state having the degeneracy min the 3 having the degeneracy and
So on i.e. given by

oo n
W= N!77g,—x constant
i=0 " nl

) N
In W= In( N! 77g —* constant)
= n!

oo

=InN!'+1In * g™ -h » n1xconstant
T

i=0 ' i=0 '

=In N4> _nn g - > Inn!+congant

i=0 i=0
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Applying Stirlings approximation Formula for evalioe

of factorials of large number we get

INNI=NInN-N

INW=NIhN-N+>nkhg->(nhn-n)+constant

i=0 i=0

=NInN-N+>nihg -Y.nhn+>n +congant
i=0 i=0 i=0

=NInN+> ning -> ninn +congant

i=0 i=0

When the system attains statistical equilibriumreheiill be
most probable distribution and thermodynamic prdtgtwill
be maximum, i.e. variation in law will be zero.

oW=0
(or)dln W=0

dNW =aNIn N+d> ning -a> ninn +d(constant) =0

i=0 i=0
(oo}

=0+ Y Ingdn-> (L+Inn)an+0=0
i=0

i=0

=Y Ingon->Innon=0
i=0 i=0

= iln( g/n)on=0

(or)



~Sin(gMon=0 - (3)

This is the 8 condition of constraint

For a system of maximum thermodynamic probabilitgt for a
system in statistical equilibrium conditions 1, 23&nust be satisfied

When there are more than two conditions Lagrangeisthods of
undetermined multipliers is used to solve the probl

Equation (1) is multiplied by, equation (2) by & combined with equation
3)
a¥on + B3 Ean-Fin(%)an=0
iz R

00

> (a+ BE~In(g /MO =0

i=0

Since the variation8ns, ony, dnz etc are independent of each other, provided
the conditions 1 &3 are satisfied the coefficieh®oi’'s must be equal to zero.
oni #0.

a+ [E —-In(g/n)=0

In(g/n) =a+ F5
gin =e”"*
_ - 1
n =—g, =ge? & (a:—g,lg:—)
LoetAE ! RT KT

- g.éﬂ/RT.e_ E KT
i

Where, gis the degree of degeneracy or statistical weigttor
for the " level. This expression is called Maxwell Boltzmann

7
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distribution law. It gives the number of particlaghe " level
with degeneracyifpaving energy gand

Ei(total) = EelectEvibt Erot+ Etrans

1.3Negative Kelvin Temperature

According to Maxwell Boltzmann statistics the edpilm
population of two levels is given by

Ny

n E
i = g B/KT

Where nis the number of particles in the upp8riével and gis
the number of particles in the lowest level at temapure T and ks
the energy of the™ilevel in excess of zero point level. At T = 0
ni/no=0 that is all the molecules will be in thegnd state as-bw
ni/no=1 and the population of the states will be equal.

In general in any system at statistical equilibritima higher
level will be occupied by lesser number of parsclean the lower
ones or will be equally occupied. To reverse thputation ratios
and have higher level more occupied than the lovesels,
temperatures even higher than infinity are needeghopulation
ratio larger than one would require T<o or negatividhis
temperature at which population inversion occursaléed negative
absolute temperature. This temperature must benldaydinity.

To understand the phenomenon of negative absautpdrature,
consider a system of ‘N’ particles existing only two energy
levels. i.e in zero and®llevel. The entropy ‘S’ when plotted as a
function of energy the following curve is obtained.



Entropy (S)

Energy {E)

At zero energy all the ‘N’ particles are in theaé&vel (lowest) which the

state of minimum disorder to minimum entropyi1s’) = ]/T
S

As the temperature is increased or energy is seghplo the system
population in the upper level increases. When e énergy levels are
equally populated the internal energy of the systeith correspond to
NE/2. There is maximum disorder and maximum entrdpys the most
probable state an@S/OE =1/T =0 as >0 or more energy is supplied all
the ‘N ‘particles will be in the upper level. EeNThis is a state of
maximum energy and minimum entropy with minimumoditer. The left

half of the curve has a positive slope (.§ES) = JT is positive that is T is

d0S
+ve. The right half of the curve as negative sliepe (a_E) =3T=-ve that

is T=-ve. This is the region of negative absotetaperature. Negative
absolute temperatures are defined by the slopevefEScurves.

In the figure as we proceed from left to right hetdirection of
increasing energy there is increasing hotness hatkfore increase in
entropy. At the position of maximum entropy whewhothe energy levels
are equally populated, the temperature is infiB&yond the maximum the
temperature must be hotter than infinity. Hence atigg absolute
temperatures are hotter than infinity.

1.4 Check Your Progress

1. What is meant by statistical therrmodynamics?
2. Write the Maxwell — Boltzmann distribution law ftre system having
N distinguishable particles distributed in non degrated energy levels.

9
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3. Give the expression for Maxwell distribution law of
molecular energies.

4. What are the relative populations of the states twio-level
system when the temperature is infinite?

5. What are the relative populations of the states twio-level
system as

the temperature approaches zero?

1.5 Answers to Check Your Progress Questions

1. Statistical thermodynamicsis the study of the microscopic
behaviors of thermodynamic systems using probghilieory.
Statistical thermodynamics, generally, provides alecular
level interpretation of thermodynamic qlides such
as work, heat, free energy, and entropy.

2 n=e%.e”® zexp™ . exp*)is called Maxwdl —
Boltzmann distribution law for the system having N
distinguishable particles distributed in non degatesl energy
levels.

(a="# p=1)

RT KT

3 n= 9

— i
PCRY:= =g¢€

=g gHRT g BKT
I

Where, gis the degree of degeneracy or statistical weigttior
for the {" level. This expression is called Maxwell Boltzmann
distribution law.

4. All the molecules will be in the ground state asab ni/no =1
and the population of the states will be equal.

5. At T = 0 ni/no=0.

1.6 Summary

. In thermodynamicsstatistical thermodynamicsis the
study of the microscopic behaviors of thermodyita
systems using probability theory. Statistical thedynamics,
generally, provides a molecular level interpretatiof

10



thermodynamic quantities such as work, heat frenergy,
and entropy

. Maxwell-Boltzmann statistics gives the average

number of particles found in a given single-paeticiicrostate.
. The energies of such particles follow what is Wwno
asMaxwell-Boltzmann statistics, and the
statisticaldistribution of speeds is derived by equating particle
energies with kinetic energy.
. One very important conclusion that will emerge from
the following analysis is that the populations tw@ites depend on
a single parameter, the ‘temperature’. That is,tistical
thermodynamics provides a molecular justificatioor fthe
concept of temperature and some insight into thigcially

Unit -1 Statistical
Thermodynamics

NOTE

important quantity.

1.7 Keywords

1. . Statistical thermodynamicsis the study of the microscopic
behaviors of thermodynamic systems using probghikigory.

2. The weight of a configuration is the number of wiyast molecules

can be distributed over the available states.
3. The most probable distribution, that of the greatesght, is the
Boltzmann distribution.

1.8 Self-assessment questions and exercises

1. Derive Maxwell distribution law of molecular eneggi
2. Explain Negative Kelvin Temperature.

1.9 Further readings

1. Statistical Thermodynamics M.C. Gupta, Wiley Eastern, New
Delhi,1990.

2. Introduction to Statistical Thermodynamics, R.P.H.Gasser and

W.G.Richards, World Scientific, Singapore, 1995.

3. Physical chemistry, Peter Atkins, Julio De Paufae8ition, 2010.
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NOTE 2.2.2 Rotational partition function

2.2.3 Electronic partition function

2.3 Thermodynamic functions in terms of partition fuoaot

2.3.1 Internal energy from partition function

2.3.2 Heat capacity from partition function

2.3.3 Entropy from partition function

2.3.4 Pressure from partition function

2.3.5 Third law and partition funnction

2.3.6 Helmholtz Free Enery from Partition Function

2.3.7 Enthalpy from partition function

2.3.8 Gibbs free energy from partition function
2.4 Check Your Progress

2.5 Answers to check your progress questions
2.6 Summary
2.7 Keywords
2.8 Self-assessment questions and exercises
2.9 Further readings

2.0 Introduction

In physics,a partition function describes the statal properties of a
system in thermodynamic equilibriufRartition functionsare functions of
the thermodynamic state variables, such as thedmnpe and volume.
Most of the aggregate thermodynamic variables ef #ystem, such as
the total energy, free energy, entropy, and presstan be expressed in
terms of the partition function or its derivativd®e partition function is
dimensionless, it is a pure number.

Each partition function is constructed to reprdg a
particular statistical ensemble (which, in turnfresponds to a
particular free energy). The most common statisecaembles
have named partition functions. Theanonical partition
function applies to a canonical ensemble, in which the syste
allowed to exchange heat with the environment aedi
temperature, volume, and number of particles. Tmand
canonical partition function applies to a grand canonical
ensemble, in which the system can exchange both dweh
particles with the environment, at fixed temperatuwolume,
Self-Instructional Matefial @Nd chemical potential. A a thermodynamically lasgstem is
in thermal contact with the environment, with a pamatureT,

12



and both the volume of the system and the number
constituent particles are fixed. A collection ofisttkind of
systems comprises an ensemble called a canonsaindhe.

2.1 Objectives

After going through this unit, you will be able to:
* Understand the concept behind Partition function
* Learn about how many Microstates are accessibfeuosystem in a
given ensembles
* Explains the thermodynamic functions in terms atipan function
» The physical basis of equilibrium can be understmpdsing the
principles of statistical thermodynamics

2.2 Partition Function

Quantum theory permits a qualitative explanatioreoérgy, heat capacity
and other related thermodynamic quantities formdi polyatomic molecules.
A quantitative interpretation is provided by theeuef certain general
function is called “partition function”. Mathemadity it was written as

q =§;gie_E%<T

Where ‘q’ is the molecular partition function

Partition function is derived from Maxwell Boltzmalistribution law.
According to Maxwell Boltzmann distribution law

Ny _go
n="°g e
I |

%

Total number of molecuts=N =) n
1=0

N=no+ny +nz + ng+ ------- n+--
n -E n -E n -E n -
N=°ge 4 °ge K¥ 0ge K4/ ...+ °e K+ /. .
o0 1 2 IV
Y% 90 Yo 9

13
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©  -E

Where > ge ATis called “partition function”. The summation is
i=0

taken over all integral values of 'i’ from zeroitdinity. It is

represented by the letter g or z

i.e partition function is the ratio of the totalmber of molecules in
the ground state. Again

when g=1, q=

qa=9
’ noN noN

Partition function is the reciprocal of the moleadtion of the
molecules in the ground state. It is a mere numdoad is a
dimensionless quantity.

q = i gie_ 5 KT
i=0

Partition function will never be equal to zeromiay vary from
unity to infinity. As T-0 g—1(E,=0).

14



2.2.1 Vibrational Partition Function

Partition function is defined mathematically as
®  -F
9= ge ha
i=0

Vibrational partition function is given by

00 —_ EV
— KT
qv - Z gve
v=0

Where g is the degeneracy factor associated with the vdmalt level. It is
unity and Eib is the energy of the vibrational state in excesthefzero point
energy.

The lowest or ground state energy or zero pointgnef simple

harmonic oscillators is given b= 0= Ehv; where ‘v’ is the fundamental

frequency of oscillation.

v:%,/K/u Where K is the force constant and --- thg
[
reduced mass of the system.

The actual value of energy of vibration is giventhg expression

E,, = \Y +E )hv
' 2
Where, V is the vibrational quantum number. It take up value from O to
o and h is the Planck’s constant for vE0=0="hv which is the zero
v 2
point energy of the vibrator. Hence energy of thational states in excess
of the zero point energy is

E=(V+ 1_)hv— ihv=th (ov=1)
v 2 2
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Ev -vhv

q,= ;gve /KT= Zoe;

qVib — @ Ohv/KT + e—hv KT + e—2hv KV + e—3hv KT _4_

mO
1
o

puthv/KT=x= 1+ e+ e > +e >+

q = 1 _ 1 _ ehv/KT
ol-e* 1-e™KT ik g

The seried+ e+ e+ + converges to

1 _ 1 - € _ ¢
1-e* 1_i e”-1 €-1
e+X
1 1
qvib

- (l _e_h\/ KT) - (1 _e—hc;/KT)

v=wave number of oscillation when zero point enesggiso
included.

Q= €M = ghvxT
I

1- (e™*) VKT _q

This expression is used to determine the vibratigraatition
function of a diatomic molecule at all temperatupesvided the
vibrational frequency is known. Vibrational frequgns obtained
from the study of the spectrum of the molecule.

If 8 =hv/K, the vibrational characteristic temperature,

O =1/1-€7%T

1 Greater the value &, (€, =hv /K) i.e. higher the value

of the vibrational frequency lower will be the \albional
partition function and lesser will be the fractiointhe

16



molecules in the excited vibrational states.
2 Greater the value of greater T will be the valugibfational partition
function.

2.2.2 Rotational Partition Function

Partition function is given by the expression

q=igie‘E‘KT

i=0

For rotational part of the partition function

00

a=¥ 0"

J=0

where gis the degeneracy factor or statistical weightdator the rotational
levels and is equal to (2J +1) where J is theimtat quantum number. Ej is
the energy of the rotational level in excess ofzbe point value.

Rotational energy of the rigid diatomic molecul®gained by
solving the schrodinger wave equation.

J(J+1)h?
8774

values from 0 teo when J = 0 =0

E,= ; Where J is the rotational quantum number. J caentalp

‘h’ is the Planck’s, constant and | the momentr@frtia | 3ur* wherey is the
reduced mass of the system and r, internucleaardist. Greater the value of
‘I' lesser will be the value of E

Inserting the value of fin the expression for partition function, we get

“ -J(J +1)h?

Provided moment of inertia is moderately large #retemperature not too
low for all diatomic molecules exceptldnd D the summation is replaced
by integration and hence

17
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J +1)h?
Zo(zJ 1)e ZIKT

2
Assume—— =4 where @ is called rotational characteristic

871K
temperature
ot X = J (I +1)R? _J@+1)4.
u 8TAIKT T
y T
—=J(J+1)
g
1.dx= (23 +1)dJ
)
Hence,
:jl-e XdX
ér -
T &
— [ e’dx
¢
q= _-1
T _8mAKT
qr h2 - h2
812K

For heteronuclear diatomics
87 IKT

h2

g =
For symmetric molecules (like homonuclear diatomlecule)

a factor called symmetry factor represented by ldteer ¢ is
introduced in the denominator. Hence in generaafiodiatomic

18



molecules.
8°IKT

4=

The symmetry factos is the number of a identical indistinguishable
configurations a molecule can assume during oneptimrotation.

For homonuclear diatomic molecule like®3, N, Cletco =2, for

heteronuclear diatomic molecules like HCI, ICI, Q@D etc.

o =1. For linear molecules like GO = 2

Interpretation
_87/IKT
r— ahz
1. gris independent of the volume of the container

2. grdepends on the symmetry of the molecule, greagesyimmetry
of the molecule lesser will be the rotational gemti function.

3. grdepends on the moment of inertia and temperatuiedirectly
proportional to | and T.

2.2.3 Elecronic Partition function

Partition function may be defined mathematically as

q= i gie_ T
i=0

Where, gis the degeneracy factor for tHelével having energyiE
in excess of the zero point level at temperature T.

19
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The electronic partition is given by

—(Ee)i

qe = _Z:():(ge)ie “r

6= @)e KT @)e AT ()l AT
0e= (Ge)o e_(EE)%T (1+ (Ge)y e_(Eel_Eeo%T+ (9e)e e_(Eez_EeO)KT +)
(9e)o (9e)o

The energy spacings of the electronic energy leasery large
compared to those of vibrational and rotationaklsvFor most
atoms except chlorine and molecules exceptN® and NQthe

energy of the next higher electronic state is nyrefater tharge,

&e, - .
so that(_* seo) is very large at moderate temperatures.
KT

Hence second and other terms can be neglected emxk hhe
electronic partition function

—~(Ee)o

qe: (ge)o € KT

The degeneracy or statistical weight factor foreleztronic level
normal or excited is (2J +1)

® H(E)y
In generalg, = Z(ge)ie KT
€0

_( Ee)O
In the ground state (E€¥ zero. Hence e /KT =1. The

contribution of this state to the electronic pastitfunction is thus
(23 +1).

He, Ne, Na vapour, Hg etc have single electronaugd state
and for the atoms of these elements the energgrdifte between
the lowest and the next electronic level is veghhi

Many monoatomic substances e.g.» GInd a few
polyatomic molecules e.g20 NO have multiplet electronic
ground states and there may be low lying excitedtenic states.

20



Hence one or more electronic states above the drstate ar¢
appreciably occupied even at moderate temperaamdshence

appropriate terms must be included in the partitiorction.

Example: the lowest state of chlorine atom havimg ¢nergy (Ee)o
zero , the value of j is 3/2 and there is anothatesenergy (EeF E: with J

value %2 . Hence the electronic partition functieatgprdinary temperature.

i —(Ee)
qe = zgeie KT
€=0

—(Ee)o —(Ee)1

qe = (ge)oe KT+ (ge)le KT
(9)0 = (23+1)=(2 ><_3 +1)=4
2
J=32

(gdl=(2J+1)=(ZXE41)=2
2

J=12
(Ee)o=0,(E):=E
q =4+2e 5

where, kis the energy of the upper level in excess of #re point level.
At higher temperatures other terms would have tmbleded.
The value of E= hv is found from the spectrum of chlorine. Thus

(Gl =4+2e™

— 4+ 2e—hc;)l/ KT

Internal energy with respect to electronic motion

0lIn
(E9,, = NKT? (?(qe)

21
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_ 2 0 -
= NKT __In( 4+ 2e"¥KT)
oT

Unit — 2
Partition Function =R(

hc (/) 1
K (Ze—hC\_//KT)_l_l

NOTE
— (9(E)c
= (T)V

_0 - 1
="(Rhevyg 1
p /R).———)

2NV KT 4 1
- /KT
hcv. 2 ehcv

=2R(—) —————
KT i 2ehcv KT, 1

By knowing vat a moderate temperature the valueepEg&
(Cv)ecan be evaluated. The possibility of electronitestavould
fail if applied to atomic chlorine at temperaturggeater than
250K. The higher the temperature the greater igelmncy.

2.3Thermodynamic functions in terms of partition function
2.3.1 Internal energy from partition function

Let E be the total energy of N molecules presetiiésystem.
Average energy <E> is given by

iEini

<E>:E =i=Q ()
N Zn

i=0

(E=)_ En N=)_n from podulate (3) and (4) oflaxwell
i=0 i=0
Boltzmann Distribution Law)

Applying Maxwell Boltzmann Distribution Law

Self-Instructional Matetial
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i.c n= _ge‘E'KT/ in equation (1)
Y

> Elogge
<E>= ‘=° 9%

- EKT
208
) >-&»ZE96‘E” .0

g & KT
gm g

Molar Partition function (Q) is given by

Q=Y g6
i =0

I.e substituting Q value in equation (2)

Eg et
Hence<E >:iZg—a (3
Q

Q= Zgi g BKT
i=0
Differentiating ‘Q’ with respect to temperaturecainstant volume
CD=GS ge™),

B E:gie_iE/K _ E

l)
=0 T?

(e"®W=e"¥df(x))
0Q E g & KT

(= = >

o KT?

2
ﬁ)vzz ege - (%)
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Incorporation of this result in equation (3)

_ KT 2(aQ
Unit -2 <E>= 9T 1 0Q OInQ
Partition Function T \) \)
NOTE
<E>= KTZ(aan)
oT Vv
Internal energy = KT 2 (a In Q)
aT Vv

g=molecular Partition function " = Q

,0Ing™
E=KT ( v
aT
E=nkT2(209) (5)
aT

Hence it is possible to determine the internal gner the system
if the partition function is known.

2.3.2 Heat capacity from partition function

oE
(__)=C
ory Vv
substituting E from (5) and simplifying the differteal, we get
C:amKTza Inq]
VoooT aT Vv
_NK 9% Inq
“TaTe

Self-Instructional Matefial
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2.3.3Entropy from partition function

Thermodynamic probability is the numbers of ways/ich system

consisting of N identical indistinguishable molezsitan be realized.

(<) n;

W = 77—
i=o n!

INW = In(72250)
i=0 n!

=In( 77g™)—=In( 77n?)

nW=>ning->n'- ()
i=0 i=0

Applying stirlings approximation formula in equati¢l)

INNI=NInN-N

nW=>nhg->(nhn-n)
i=0 i=0

nW=>nlhg->nhn-n+>n
i=0 i=0 i=0
According to Maxwell Boltzmann distribution law

n= ”ig e EXT but lo_ N ‘g’-molecular partition function
Y% 9% 9

Hence, n:’\ig?—EiKI
- q

InW=3ning -3, nIn( N)g.e‘Ei/ “T+>'n

i=0 i=0 q i=0
N
hw=Y ning -3.nin(—)g-X nhe & +3n=0
iz | T iz
25
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o o N © o . o
|nW:Zni|ngi —Zniln o _: ning —anneE'KT +: n=0
=0 = q i- = =0

o0 g n E 00
S ninC)+ 1 2+N =N
L' N KT (2n=N)

(In and e gets cancelled, by postulate (3) of MdkBetzmann
distribution law )

E
INW = Zn |n(—q) +— +N ((n E =E) by postulate (4) of
o N KT E
Maxwell Boltzmann distribution law

InW=NInq—NInN+£+N

KT
E
=NIng-(NInN)-N+___
KT
N E
INW=Ing"™ - In(N!) + _
KT
N N =
InW=1In + —
(ﬁ.} KT
Multiplying throughout by K
el g\  KE
KiInW=S=Kln + —
(W.} KT

(0S=KIn W) (Boltzmann-Plank entropy probability law)

We know that internal energy
Jdinq )

oT Vv

E=NKT?(

26



i.e. equation (2) becomes

KT2,0InQ

S=Kln Q+—( o7 )
s =knQ+kt(*"%)
molar aT \Y%

Molar entropy of an ideal gas can be determinehfitee knowledge of
partition function.

2.3.4 Pressure from partition function

dA=-PdV-SdT

p=—(% —(—) )ﬁ(l)
ov "V

Since Helmholtz free energy

1
A=-KTInQ (INQ=7_)
Q

(&) =" 0)
Q" Q
Substituting (2) in equation (1), we get
p= KT(a nQ,
ov T

2.3.5Third law and partion function

Internal energy E of a system is a function of @ &hn
E=f(T.,V)
Applying rules of partial differentiation,

OE OE
dE=(")dT+(") dv- (1)
aT Vv oV’
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from the combinedland 2° law of thermodynamics.
dE=qgq-W

dE=TdS- PdV

TdS=dE+PdV - (2)

Substituting the value of dE from equation (1) quation (2), we
get

Tds= (a—E) dT+ (a—E) dv+Pdv - (3)
oTV oV’

0E, =
(57W =S

At constant volume dV=0, i.e. equation (3) becomes

TdS=C,dT
_dar
dS_ Q?
Entropy change for a finite process
T 4T
dS=|(C, —
fos
11 OE
— = _(_) dT E:KTZaInQ dT
S=S 7[5 Cor e
19 ,0InQ
—§ = [——(KT2——),)dT
TS E)[TGT o V)

S-S = }l;OKTz(a‘;LTQ) fudv=uv-[vdu

28



KT*Car T2)

ol
=KT (aLTQ)\ﬁIKO InQ

0InQ

s S =KT( )+[KInQ]T
0 aT 0
dlIn
S-S=KT( Q) +KInQ -KIhQ
T 0 OT \% T=T T=0

Comparing left and right hand sides and equatiegémperature dependent
and temperature independent terms we get
0InQ

S=KT(__7) , TKInQ
T aT T=T
$=KInQ;,

When T=0, Q=1 hence KInQ=0

This is 3 law i.e. All perfect crystalline solids aflOwill have zero entropy

2.3.6Helmholtz Free Energy from Partition Fuction

Helmholtz free energy is A = -KTInQ
According to thermodynamic egn

A=E-TS

Substituting the expressions for E and S in terfpdition function

al
E = KTZ(&) (from internal energy)
T Vv
al
S=KInQ+ KT(ﬁ) (from entropy)
oT Vv
A=kT?2(°MQ) _TkinQ+kT (P9
oT Vv oT Y
A=KT (aan)—KTInQ—KTZ(aan))
oT Vv oT Vv
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A=-KTInQ

2.3.7Enthalpy from partion function

H=E+PV
»,0INQ _

) (From internal energy)
oT "

0InQ
P=KT(_Z = )_ (From pressure)

E=KT2(C

0InQ
ov T
amQH
ov T

6InQ) + KT (
oT Vv
GMQ) v (
oT Vv

H=KT?( )V

=KT[T.(

amQ+GMQ
oT/T oVN

amQ+6MQ
oinT 0dInV

H = KTJ

]

H =KT[

]

2.3.8Gibbs free energy from partition function

G=H-TS
=E+PV-TS
G=A+PV
A=-KTInQ
OMQ)
oT T

P=KT(

G=-KThQ+KT(°"?) v
oT T

0InQ
d1In

G = KTI[( )—mQ]
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2.6 Check Your Progress

1. Define partion function.

2. Define canonical ensemples

3. Give an expersssion for Helmholtz free energy fpartition function.
4. Give theo value (symmetry factor) for 40, HCI, CQp.

2.7 Answers to check your progress questions

1. partition function describes the statistical proigsrof a system in

A quantitative interpretation is provided by thesuf certain generg
function is called “partition function”. Mathemadty it was written as

2. A a thermodynamically large system is in thermahtaot with the
environment, with a temperatufie and both the volume of the syste

3. A=-KTInQ
4. o values for HO; HCI, CO— 2, 1, 2.

thermodynamic equilibriunPartition functionsre functions of the
thermodynamic state variables, such as the temperahd volume.

Most of the aggregate thermodynamic variables efsistem, such as
the total energy, free energy, entropy, and pressan be expressed ir
terms of the partition function or its derivativdie partition function is
dimensionless, it is a pure number.

q =iZ:J)gie_E/<T

Where ‘q’ is the molecular partition function

and the number of constituent particles are fixedcollection of this
kind of systems comprises an ensemble called angzal@nsemble.

2.8 Summary

The molecular partition function indicates the nembf thermally
accessiblestates of a collection of moleculestatrgeraturd.

The translational partition function is calculatednoting that
translational states form a near continuum. Wherettergy is a sum of
contributions from independent modes of motion,gasdition function
is a product of partition functions for each modenotion.

The internal energy is proportional to the derivatf the partition
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function with respect to temperature.
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. The paramete =1KT.

. The statistical entropy is defined by the Boltzmann
formula but may be expressed in terms of the médeqartition
function.

. A canonical ensemble is an imaginary collection of
replications of the actual system with a commonperature. It is
used to extend statistical thermodynamics to irelateracting
molecules.

. The thermodynamic limit is reached when the nunaber
replications becomes infinite.

. Most members of the ensemble have an energy vesg cl
to the mean value.

. The internal energy of a system composed of intiexgc
molecules is proportional to the derivative of tdamonical
partition function with respect to temperature.

. The entropy of an interacting system can be cdledla
from the canonical partition function.

2.9 Keywords

1. The molecular partition function indicates the n@embf
thermally accessiblestates of a collection of males at a
temperaturd.
2. A canonical ensemble is an imaginary collection of
replications of the actual system with a commonperature. Itis
used to extend statistical thermodynamics to irelateracting
molecules.
3. The thermodynamic information in partition function
a) The internal energy of a system composed of intieixgc
molecules is proportional to the derivative of damonical
partition function with respect to temperature.
b) The entropy of an interacting system can be catedla
from the canonical partition function.
The following functions are written in terms of tb@nonical
partition function:
(a) Helmoltz energy,
(b) Pressure,
(c) Enthalpy,

(d) Gibbs energy.
4. The molecular partition function factorizes intpraduct of:

a) translational,

b) rotational,

C) vibrational, and

d) electronic contributions.

The contributions to the overall partition functiare summarized

32



2.10 Self-assessment questions and exercises

1. Define Molecular partition function and ensembles.
2. Define partition function and thermodynamic funago
interms of partition function.

2.11Further readings

1. Statistical Thermodynamics M.C. Gupta, Wiley
Eastern, New Delhi,1990.

2. Introduction to Statistical Thermodynamics,
R.P.H.Gasser and W.G.Richards, World Scientifieyg&pore,
1995.

3. Physical chemistry Peter Atkins, Julio De Pauld"9
edition, 2010
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UNIT- Il statistical interpretation of third law

Structure

3.0 Introduction

3.1 Objectives

3.2 Bose Einstein Distribution Law

3.21 Photon Gas — Application of Bose Einstein Law
3.2.1.1Derivative of Planck’s Black Body radiatiem

3.3  Fermi — Dirac Distribution Law

3.3.1 Electron Gas — Application of Fermi Dirac Distrilmrt Law
3.3.1.1Determination of Average Energy of Free Electronbletals
3.4  Check Your Progress

3.5 Answers to check your progress questions

3.6 Summary

3.7 Keywords

3.8  Self-assessment questions and exercises

3.9  Further readings

3.0 Introduction

The Third law of thermodynamics is sometimes statsdfollows,
regarding the properties of closed systems in thdgmamic
equilibrium:

The entropy of a system approaches a constant aslits temperature
approaches absolute zero.

This constant value cannot depend on any other npess
characterizing the closed system, such as pressuapplied magnetic
field. At absolute zero (zero kelvin) the systemsinbe in a state with
the minimum possible energy. Entropy is relatedtite number of
accessible microstates, and there is typically omgue state (called
the ground state) with minimum enerfdyln such a case, the entropy at
absolute zero will be exactly zero. If the systeoesinot have a well-
defined order (if its order is glassy, for examptegn there may remain
some finite entropy as the system is brought ty \@wv temperatures,
either because the system becomes locked intofegaation with non-
minimal energy or because the minimum energy sg&aten- unique.
The constant value is called the residual entrdpythe systen’ The
entropy is essentially a state-function meaning ititeerent value of
different atoms, molecules, and other configuraioof particles
including subatomic or atomic material is defingdelmtropy, which can
be discovered near 0 K. The Nernst—Simon stateofahe third law of
thermodynamics concerns thermodynamic processes fated, low
temperature:

The entropy change associated with any condenssténsy
undergoing a reversible isothermal process appesazhro as
the temperature at which it is performed approachi€s



Here a condensed system refers to liquids andssdidlassical
formulation by Nernst (actually a consequence efTthird Law) is:

It is impossible for any process, no matter hovaided, to reduce the
entropy of a system to its absolute-zero valuefinite number of
operations.

There also exists a formulation of the Third Lawiahhapproaches the
subject by postulating a specific energy behavior:

If the composite of two thermodynamic systems darss an isolated
system, then any energy exchange in any form betwesse two systems
IS bounded

3.1 Objectives

After going through this unit, you will be able to:

Explain about statistical interpretation of thiesu

Understand the concept of Bose Einstein distrilouov and it's
applications

Understand the concept of Ferrmi Dirac distributeon and it's
application.

3.2 Bose Einstein distribution law

The statistics applicable to particles whose tatale function is
completely symmetric is known as Bose — Einstesiritiution law. Bose
Einstein statistics is applicable to Bosons, whaoh particles with integral
spins. i.e 0,1,2,3,4-—- ex:photongHe, °H, N, '°0, CQ etc. In the
statistics thermodynamic probability is the numbémvays in which the
(m) indistinguishable particles can be placed inimdggtishable boxes or
energy levels (gi) without limiting the number ddirpicles placed in each
box or energy level.

W= oo]_‘(gl -1+ ni)!
=0 (g —-1)!n;!

Where W is the total probability; is the number of particles in th& level
having the degeneracy gi.

Consider a system of N particles of an ideal gdmschvare
identical, independent and indistinguishable lgiarticles have energyE

n, particles are in the energy state E
35
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nz particles are in the energy state E

nz particles are in the energy state E

Such thad n=N and
i=0

Total number of particles in the system is conssauat hence there is no
variation in the total number of particles.

ON=0i.e

Z;Eiani: 0- (1)

Total energy of the system is constant

JE=0i.e

> Eon=0- (2)

1=0

Equations 1 and 2 are the two conditions of comdtfar a system of gas
in statistical equilibrium.

Maximization of thermodynamic probability

According to Bose — Einstein statistics thermodyitgonobability is the

number of ways in which the system of) (dentical indistinguishable
particles can be placed in different energy lev@s without any

limitation to the occupation number is

W= ;;-(gi —1+n)!
=0 (g;—1)In;!

Where nis the number of particles in tH& level having
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the degeneracy gi and gi>>ni

Since gis very large (g>>1) one can be neglected and Unit — 3
hence Statistical Interpretation
of Third Law
(g +n)! NOTE
W=+ 1
i=0 @ lni 1

nw = in 77 {8+ MY
=0 gIn!

In W= Zln( g+ ni)!—ZIn( gi)!—_Zm( n)!

On using stirlings approximation for factorialslafge
numbers.

an:Z[(gi +ni)|n(gi +ni)_(gi +ni)]_z_(gi In 0i _gi)_z_(ni In n _ni)

InW = Z +n)In( i+ni)_zgi_zni_zgi|ngi+zgi_zni|nni+zni
=0 ) =0 =0 =0

=Z(gi +n)In(g, +ni)_Zgi In g, _Zni In n

For a system which has attained statistical equuilib
there will be most probable distribution of molezsuland
the thermodynamic probability of the system will be
maximum and hence,

oW=0(or) dnW=0

oW = Zg+q(g+n +ZIng+n Jon -0~ an—+|nn)an 0
i=0 i=0 i=0 n

37
Self-Instructional Material



Unit — 3
Statistical
Interpretation of
Third Law

NOTE

Self-Instructional Mater

ial

=>(1+In(g+n))on - > (1+Inn)on =0
i=0 i=0
ainw=3In(%" Man=0
i =0 n, l
o Inw=In(+%)on=0
i=0 n I
W =-FIn(1+ %)an =0 - (3)
i=0 n I

Equation (3) is the third condition of constraint.

Since there is more than one constraint in theegystarangian
method of undetermined multiplier is applied tovedihe problem.

Equation (1) multiplied by, (2) byp and combined with equation (3),
we get

a¥on+BF Eon-Fina+F)an=0

i=0 i=0 i=0 N,

Wherea &P are the lagrangian undetermined multipliers.

S (a+ B~ In@+ F)an) =0
o i n i

on "s will vary independently and henamn,# 0 and coefficient ofn,
must be equal to zero

a+ [E- In(1+i) =0
i n

|n(1+i) =a+ [

n.

1+ 9 _ o
n
9 = ey -1
n

= @Ry g +;95') = a=-y/RT B=1KT
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= /./RTgiEl/kT
(e/RTEK Y -1

As T—wo e >>1 and hence ‘1’ in the denominator can be negtetd

get Maxwell Boltzmann distribution law. At low tematures and for
problems concerned with radiation ‘1’ in the denoator cannot be
neglected.

Applications

1 Bose Einstein distribution law is useful to deterenthe number of
identical and indistinguishable particle in th8 fevel having the
degeneracyigvith energy Eexcess of the zero of the zero point level.

2. It is used to explain the behavior of Helium at ltemperature
through Bose — Einstein condensation.
3. It is used to explain the radiation by consideringm as photons.

It is used to derive Planck’s Black body radiatiaw and all the classical
laws of black body radiation.

3.2.1Photon Gas — Application of Bose — Einstein Distrilstion Law

3.2.1.1Derivation of Planck’s Black Body radiationaw

According to Bose-Einstein Distribution law the rben of identical
indistinguishable particles; having the specified energy i excess of
Zero point energy is

_ O;
n; _m - (1)

Where, ‘g is the degeneracy factor of the translationaélsy

Electromagnetic radiations consist of discrete g@pneparticles
called photons contained in a container of volumevith a definite
energy. Photons do not interact with each other lamtte a very small
black body is assumed to the present in the cartamabsorb and emit
photons and thus thermal equilibrium is possibl@ab& free energy of
radiation is zero at equilibrium and hence 0 anda = - ¢/RT=0.
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For this system Bose Einstein distribution law éguation
(1) becomes.

g
n=__ (2
i epEl—l ( )

(a=-p/RT=0)

dg, the degeneracy of the translational states ialeiguthe
number of lattice points contained in /8f the spherical
shell of radius n and thickness dthe number of lattice
points corresponding to the specified energy rarggiven

by 1/8" the volume of the spherical shell of radius n and
thickness dn.

2 2
:4m dn:mdnﬁ (3)
8 2

The length ‘I' of the box is related to the wavejénof the de-Broglie
wave in particle of one dimensional box as

dg

l=njy2=V?3

207 _ a3y

== A=
n y . dy
3
n° = 2 vy \;ys
C

3n’dn= zcﬁ;dy: n“dn= 8v1(/;dy

Substituting the value ofdn in equation (3)
_ mevy“dy - ()

dg P 4

Radiations are polarized in two ways (i.e. equatinx2)

Hence dg= 277 8vyidy
2 c
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_8m

CS

dg ydy - (5)

Replacing gi, by dgand n by dn and substituting dg value (5)
in equation (2) we get

=8V
S (€F)-1

‘dN’ is the number of photons in the energy rangenf v and v+dv. To
obtain the total energy in the range v and v+dv,isikultiplied by hv,
which is the energy of one photon.

dE = hy.dn
8w yidy
dE:hy_ =E
¢ ((€F)-1 44

Energy density=energy per unit volume.

dn:ﬁ =M
v cEe® -1

dE_ 8rhy°dy

W g d
v Cg(eﬁfi _1) y y

This is Planck’s radiation law in terms of frequgmonversion in terms of

A.
4_c
y=c/A V==
/]4
87hc'dA 3 s s
du= S @) 4ydy=c.-44dA
87hc A ct
— c AKT }/3 —
d= s (e -1) dy=".d
du=E,dA
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This expression is Planck’s radiation law expressddrms
of wavelength.

When energy density is plotted as a functioi,dhe
following graph is obtained.

Emax
{2000K)
djL

di |

\l\

{energy i‘ISE}OK)
density)
| I/ \/<
Emax | / [ AT %
(1000K;| / ¥ \ |
é&’ g \ P
=l | -
-l \1 —e
}"ma“ )\amax Amax
{2000K)  (1500K) (1000K)
A —

Experimental observation

1. Energy is not distributed uniformly throughout gpectrum.

2. Energy density is minimum both as»>0 & A—o. It increases ak
increases, attains a maximum then decreases. Thelemgth at which
energy density is maximum is calledmax and the maximum energy

density corresponding tonaxis called Eax

Emaxincreases with increase in temperature Jangdecreases with

increase in temperature.

3. Total energy density increases with increase irperature.

All the experimental observation is explained bgrfek’s radiation

law.

3.3 Fermi - Dirac Distribution Law

Need for Fermi — Dirac distribution law
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1. Maxwell Boltzmann distribution law fails to explaihe
low temperature behavior of helium and the spectofilolack —
body radiation.

2. It does not explain the properties of “electron”gas
metals.
3. It fails to explain the behavior of ideal gas camiay

identical indistinguishable molecules.

Derivation of Fermi-dirac distribution law

Consider a system of N identical independent intisishable particles
of an ideal gas. Let there beparticles in the energy state, B particles in
the energy stateiErp particles in the energy stated&nd so on.

1 Total number of particlei n=N
1=0

Since the total number of particles in the systeronstant.

26” =0 - (1)

This is the first condition of constraint.

2 Total energy of the system is constant

ZEian; 0- (2

This is the second condition of constraint.

Maximization of thermodynamic probability

According to Fermi- dirac statistics the thermodyiaprobability or
the number of ways in which; entical indistinguishable particles can b
distributed amongi@nergy levels of energy: ESuch that not more than on¢
particle can occupy a given level is given by

_ g !
W= g —mmt

The total number of ways for the whole system cgiimg] of N particles
would be

U
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® ® 9!
TTW,=W=77
=0 =0(g—n)in;!

nw=mn7__ 9 - (a)
=0(g— ny)!ny!

Applying stirlings approximation formula in equati¢a)

InW=In 7rg!- In 77(g,— n)!'- In 77n/!

i=0 i=0 i=0

InW=>Ing!->In(g-n)->Inn!
i=0 i=0 i=0
INN!=NInN-N

InW=Zgi Ing, _Z(gi —-n)In(g _ni)_zni Inn,

For a system in statistical equilibrium thermodymaprobability
must be maximum. Hence maximization of thermodymgami
probability must be maximum. Hence maximization of
thermodynamic probability leads t0 In W =0

0 InW:O—Z(g_n_.—lan +In(g —n_)an_)—Z(n_.—laan non)=0

o 9N izo N

== (1+In(g—n)an -3 (1+ Inn;)on,= 0

=-Fin(%” Mon=0
=0 n I

= —Z In(%—l)an_ =0-> (3)
n I

i=0 i

This is the third condition of constraint. In orde&r solve the
problem for the system consisting of two or moraditons of
constraint Lagrangian method of undetermined mligtip used.
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Equation (1) is multiplied byr and equation (2) by and
combined with the condition (3 and p are the lagrangian
undetermined multipliers.

a20n+ﬁ250n Sin( ¥ 9'—1)an 0

i i i=0 ni
i=0 i=0

S (a+pE-In(%-1)an=0
i=0 I n, i

Sincedn,’s can vary independentBn,#0 and hence

a+pE-In(¥-1)=0
i n

n(%-1)=a+ g
n, '
91 = garm)
n,
9 garmryg
n

N g - @

n = g
| TGHRTTERT) 11

Equation (4) is the mathematical expression of k&irac distribution law.
Application

1. Itis applied to explain the behaviour of “electiges” in metals and
thermionic emission and semiconductors.

2. It helps to determine the number of particles mithstate with
degeneracyighaving energy Hn excess of zero point energy.

3.3.1 Electron Gas — Application of Fermi-Dirac Distribution Law

3.3.1.1Determination of Average Energy of Free El&émon Metals
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A metal, each of whose atoms contribute one or rfreee
conducting electrons is regarded as “electron gas”.

The number of electrons having energy in the rdregereen
E and E+dE is given by Fermi-Dirac distribution law

dg

E -E¢

e KT +1

dN=

The number of energy levels in the range betweandEE+dE

for electron in a box of volume is twice that faarficles in a
box of volume is twice that for particles in a bokvolume V
because electrons have spin of +1/2 or -1/2. Selémtrons,

2
__m“dn_ - ()
dg= 2" _nrfdn 1
n2h? 2 23
E:8maz (&=v ,a=v')
,  8mVP°E
R
o (Bm)YAy TOER?
h
s (8m)72VEP?
n= T
32
3n2dn:(8:;) V.3 2B E

Substituting the value ofdn in equation (1), we get

32
dg=%.v.5ﬂZdE

Hence,
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N= 8m)?2.77.v E* %dE

E

ohe.(e KT +1)

N _ (8m)*2.7zV.E*?

dE E-E
2h.(e KT +1)

This equation is called Fermi — Dirac formula adrelectrons. This
represents energy distribution for free electrons.

At absolute zero (i.e. T=0). The particles occupy lowest level upto
Er, Fermi energy. Fermi energy indicates the maxinemergy of fermions in
the system.

If there are N electrons in the metal at absoluteo zand if the
maximum energy of an'eis EFo is for O<K<EFR,

- de:EJEO (8m)3*2
0

dE
2h*. (e ca +1)

At absolute zero when; EER,

EFR,

CRON/AY
j dN=N :'[ T-dE
3

(8m)32. 1.V . EF %7
N =20

2h 3/2

3
gpse  ONh

~ @My
= ﬁ Xh—3
N (8m)??

3N |23
EF = X 3
0 (_71;/) / ((8m) y
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EF h? (ﬁ) 2/3 :hz_(_?z_p)z/s
0~ % ]N 8m Vi
N/V is the number of free electrons per unit voluries the

free electron densityp]. Fermi energy for free electrons in
metals can be calculated by knowing the free elaalensity.

3.4 Check Your Progress

1. What is the third law of thermodynamics?

2. What is the need of Fermi Dirac distribution law?
3. Give the applications of Bose Einstein law.

4. Give the applications of Fermi Dirac distributiaw

3.5 Answers to Check Your Progress Questions

1. Third law of Thermodynamics

. The third law of thermodynamics is sometimes stated
follows, regarding the properties oflosed systems
in thermodynamic equilibrium.

. Here a condensed system refers to liquids andssohd
classical formulation by Nernst (actually a conssme of the
Third Law) is:

. It is impossible for any process, no matter how
idealized, to reduce the entropy of a system tabisolute-zero
value in a finite number of operations.

. There also exists a formulation of the Third Lawiath
approaches the subject by postulating a specifierggn
behavior:

. If the composite of two thermodynamic systems
constitutes an isolated system, then any energyagxge in any
form between those two systems is bounded.

2. Need for Fermi Dirac distribution law

. Maxwell Boltzmann distribution law fails to explaihe
low temperature behavior of helium and the spectofilmack —
body radiation.

. It does not explain the properties of “electron’gas
metals.
. It fails to explain the behavior of ideal gas camtzag

identical indistinguishable molecules.
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3. Applications of Bose Einstein distribution law
. Bose Einstein distribution law is useful to detarenthe number of

identical and indistinguishable particle in tielevel having the degeneracy

gi with energy Eexcess of the zero of the zero point level.

. It is used to explain the behavior of Helium at leamperature
through Bose — Einstein condensation.
. It is used to explain the radiation by consideritiggm as

photons. It is used to derive Planck’s Black boalgiation law and all
the classical laws of black body radiation.
4. Fermi Dirac distribution law

. It is applied to explain the behaviour of “electrgas” in metals
and thermionic emission and semiconductors.
. It helps to determine the number of particles i thstate with

degeneracyighaving energy En excess of zero point energy.

3.6 Summary

. Bose—Einstein statisticsdescribe one of two possible ways in
which a collection of non-interacting, indistingoigble particles may
occupy a set of available discrete energy statethe@imodynamic
equilibrium.

. The Bose-Einstein statistics apply only to thosdigas not
limited to single occupancy of the same state—ihgparticles that do
not obey the Pauli exclusion principle restrictioBsich particles have
integer values of spin and are named bosons, #iftestatistics that
correctly describe their behaviour. There must deono significant
interaction between the particles.

. Fermi—Dirac and Bose—Einstein statistics apply wipggantum
effects are important and the particles are "inajstishable”. Quantum
effects appear if the concentration of particldésBas

. Fermi—Dirac statistics apply to fermions (partidieat obey
the Pauli exclusion principle), and Bose—Einstéaistics apply

to bosons.. Both Fermi—Dirac and Bose—Einstein imechlaxwell—
Boltzmann statistics at high temperature or atéowcentration.

3.7 Keywords

The Bose Einstein distribution describes the giedis behaviour
integer spin particles (bosons). At low temperatbesons can behave
very differently than fermions because an unlimitednber of them
can collect into the same energy state, a phenameralled
“condensation”.
The Fermi Dirac distribution function, also call€@&rmi
function, provides the probability of occupancyenfergy
levels by fermions. Fermions are half — integernspi
particles, which obey the Pauli exclusion princidlbe
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Pauli exclusion principle postulatestht only onerfien
can occupy a single quantum state.

3.8 Self-Assessment Questions and Exercises

1. Derive Bose Einstein distribution law and give its
applications.
2. Derive Plank’s black body radiation law using B&sestein
distribution law.
3. Derive Fermi Dirac distribution law and give itspdipations.
4. Determind the average energy of free electron meisihg

Ferrmi Dirac distribution law.

3.9 Further Readings

1. Statistical Thermodynamics M.C. Gupta, Wiley
Eastern, New Delhi,1990.

2. Introduction to Statistical Thermodynamics,

R.P.H.Gasser and W.G.Richards, World Scientifiag8pore,
1995.

3. Physical chemistry Peter Atkins, Julio De Paula™9
edition, 2010
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Unit -4: Heat Capacity of solids

Structure

4.0 Introduction

4.1 Objectives

4.2 Heat Capacity

4.2.1 Classical observation of heat capacity dtisol
4.2.2 Einstein theory of heat capacity of solids
4.2.3 Debye theory of heat capacity of solids

4.3 Non equilibrium thermodynamics

4.3.1 Postulates of local equilibrium Onsager fdatha
4.4  Check your progress questions

4.5  Answers to check your progress questions
4.6 Summary

4.7  Keywords

4.8  Self-assessment questions and exercises
4.9  Further readings

4.0 Introduction

Heat capacity or thermal capacity is a physicalpprty of matter,
defined as the amount of heat to be supplied tor@engmass of material to
produce a unit change in its temperature. The &lafrheat capacity is joule
per Kelvin (J/K). Heat capacity is an extensivegamy. The corresponding
intensive property is the specific heat capacitgviding the capacity by the
amount of substance in moles yields its molar leapicity. The volumetric
heat capacity measures the heat capacity per volume

4.1  Objectives
e To understands the heat capacity of the solidscssical
observation of heat capacity of solids
* To understand the Einstein theory of heat capacity
* To undertand the Debye theory of heat capacity
* To understand the Non equilibrium thermodynamia$ an
Onsager reciprocal relation.

4.2  Heat capacity
Heat capacity is the quantity of heat requiredaiee the temperature of the
whole of the substance through 1K.

Even at absolute zero the atoms in a solid willvidgating
about their equilibrium positions. When the tempe® is
increased the amplitude of vibration increases \@bdational
energy of the atoms of the solid is increaseds ithe rate of
change of vibrational energy of the solid with tergiure that
determine the heat capacity of solids is
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4.2.1 Classical observation of heat capacity of solids

An ideal solid is one which consists of spacedatdf

NOTE independent atoms vibrating about their equilibrium
positions. They do not interact with each othechzatom is
considered to be a simple harmonic oscillator ardvbrate

in three mutually perpendicular direction and caméhthree
vibrational degree of freedom.

According to equipartition principle of energy each
vibrational degree of freedom contributes one KTthie total
energy of crystal per atom. A solid consisting &f 8toms
will have 3N vibrational degree of freedom and teendgll
contribute 3NKT or 3RT/gram atom.

Ein=3RT
c= (GEvib) _ (GBRT) I
YoooT Yot

3x1.1987cal/degree/gm.atom
Cv=5.941 cal/degree/gm.atom
Cv = 3x8.314 cal/degree/gm.atom
Cv=24.942 cal/degree/gm.atom

According to the classical principle the heat cipaat
constant volume must be constant and independent of
temperature. Heat capacity measurements are usoatleg at
constant pressure and hence dan be converted into Cp
using thermodynamic relationship.

TVaVv?
+
B

Where oy is the coefficient of thermal expansion arfll
compressibility factor , V= atomic volume.

C,=C,

p
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4.2.2

Classical theories failed to explain its behaviotivariation of atomic

heat capacities of solid elements with temperatiuesto the assumption
that solid elements absorb heat continuously. Einstised Quantum
theory to explain all the experimentally observedarding the variation

Einstein’s theory of heat capacity of solids

of heat capacity with temperature.

Assumption of Einstein’s theory

1.

No

Heat is absorbed or radiated in the form of digcpeicket called
photons. Each photon has energy equajto h

Each solid consists of atoms arranged in spadedathd are
independent.

Each atom is considered as a simple harmonic atmill

The atoms vibrate about their equilibrium positianth a
uniform frequency which is independent of the pmnese of
neighboring atoms. This frequency is represented asd is
called Einstein’s characteristic frequency.

The frequency of vibration of atom is charactetistif the
particular solid concerned.

Each atom has got 3 independent vibrational degrefesedom.
The average ‘E’ per degree of freedom is not etuadt” given

\
by equipartition principle, but is equal t%hw as calculated

b planck’s using quantum theory.

Vibrational energy associated with one atom

_ hv
BCEAE

Vibrational energy associated with 3N atom

_ 3Nhv
- ehv/ KT _1

Heat capacity at constant volume

_ ,O0E,
C = ib
v = oT W

53

Unit—4
Heat Capacity of
soilds

NOTE

Self-Instructional Material



Unit—4
Heat Capacity of
soilds

NOTE

Self-Instructional Mate|

rial

3NhvE

0
C= O_T( ehv/KT_i

a hvE KT -1

_ — -1)
= 3NhvE
VEsr (@

Multiplied and divided by K
GVEKT hvE

3thE( ERT 1) KT 2

hvE v
2 & E/KT

kT (@R y
ekt hvE? - ()

SRegerr—qy2 (o)

_hiE
K

3NK(

b

Na= Avagadro number
n = number of gram atoms
N =Na, Nak=R

Put .= hvE/K, whered. is called Einstein’s characteristic
temperature.

e F ()

C, 3R L .( 2
v (eGET_l)Z -I'_)

Equation (1) and (2) are called Einstein’s heabcép
equation.

Factor explained by Einstein’s theory
According to Einstein’s theory heat capacity equati

1. Cv varies with temperature. It is a function of aint
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related to temperature in an exponential manner.

2. It explains th shape of the curve . siitkés
related toveas =", Cvis afunction obE /T, E
E
K

is the Einsteins characteristic of the element unde
consideration. The solid having more or less cowmigar
VE values will have the same type of curve. When Cv is

plotted as a function of G for many elements the
following graph is obtained .

3. As T—0 Cv attains zero value
Einsteins heat capacity equation is

e’

R(e - 1)2( E)2

As T—0, 8. [T—w , % /T >>1,

And hence ‘I’ in the denominator of Einsteins hegpacity of
equation can be neglected and hence the equatiomies

6 T 2-6T
C/=3R (eeE/T)z %) _SR(T ) eE
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Heat Capacity of
soilds e %" Le?=0

Hence G=0

NOTE . . : .
4. As T—o Einsteins equation reduces to Dulong and Petits la

is G, = 3R Einsteins Equation is

e

C,= 3R(e r 1)2( E)Z

As T—oo, 8./T will tend to zerd]./T is expanded as power
series ofg./T.

3 2
(ng —1)2=(l+ /T) @ /T) (‘% /T) + -1
2! 3!
‘(_) s+ (EM (&Y, 3
2! 3!

As T—oo, G./T will be very small and except to | terms all eth
terms can be neglected. Hence,

@ -12= %y
T

As T—oo, substituting this condition in the Einstein heapacity
equation

c=r €7 xGe g -
(61T T

As T—owo, C,= 3R . This is Dulong petits law.

Self-Instructional Mategrial
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Limitations

1. It predicted satisfactorily the value of specifigalh of solids at high
temperature. But at low temperature the predicedder
are found to be lesser than the experimental values

2. It fails to describe the behaviour of crystals nabsolute zero.
Failure of this theory is due to the assumption #tiahe
atoms in the crystals are independent and osciéte
uniform frequency. He neglected the mutual forces
exerted by the atom upon each other Debye modified
Einstein’s theory.

4.2.3 Debye theory of heat capacity of solids

Einsteins theory fails to describe adequately thiealviour of crystals
near absolute zero. Failure of Einstein’s theory dise to the
assumption that all the atoms in a solid oscillaigh uniform
frequency. He neglected the mutual forces betwkeratoms. Due to
Proximity of atoms in a solid there will be intetiao and hence the
atoms cannot osciallate with uniform frequency.ofidscontaining N
atoms will behave as N coupled oscillators andrtfrequency will
vary from zero to a maximum valuer (ay. In order to determine the
distribution of frequencies Debye disregarded thecture of the solid
and he treated it as a homogeneous continuoudcetastlium the
vibrations of atoms are considered as equivalentlsstic waves
propagated in the elastic medium with differengérencies.

When a continous solid is subjected to elasticatibns, two
kinds of vibrations are produced.

1. Transverse vibration and
2. longitudinal vibrations
According to vibrational theory

Number of modes of longitudinal vibrations

475°dv 3

Per unit volume with frequencies in the rangev is= d

Where --- is the velocity of the longitudinal vibiens.
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Number of modes of transverse vibrations

Per unit volume with frequencies in the rangandv+dv is =

478Pdv
c’

=2X

Where Cis the velocity of transverse vibrations ( since

transverse vibrations have two independent direstad
A78Pdv

C?

motion is multiplied by 2).

Total number of independent vibrations in the fietey range
vtov+dv = 477@3 +£3)v2dv
C~ C

If V is the volume of one gram mole of the solitien,

VITI ax

Total number of vibrations:J' AT (i +%v2dv
o 3CI Ct

3
= 47'K/(i+2— )'Vmax
Cl gt 3

3

wherevmax= vpis called Debye characteristic frequency.

If there are N atom in volume V the possible vilmaal
degrees of freedom = 3N

Hence

3
3N = 4m(i+2— )ymax
Cl Cct 3
3 3
%: 47K 1

Vit cl ct

The degeneracy associated with a range of freqegfr@my
andv+dv was calculated by Debye using vibration theorys It
found to be proportional tef+dv.

dg O Vidv

dg = c’dv wherec = 4nv(ir 1)
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1 2
dg= 478(—= + 2y v
9= 47+ )Y

3

dg =9—3V2d
Vi v

Total number of vibrational degrees of freedom trystal consisting
of N atoms will be

dg=—-Vidv
v

m

dg= %vzdv

Vb

According to Debye the total energy of a crystablsained by
adding the energies associated with all the varieiwational
frequencies property weighed by their degeneracies.

Average energy of an oscillator is \pE:ﬂ+ hv
2 th/KT_l

Where W/2 is the zero point energy.

Total vibrational energy of a crystal

Vmax

£< Ev>

The first integrand on integration gives the t&@RE of the crystal,
which is equal to

Vimex hv, hv 9NVAdv
E=1 2 (ehvKT-1) ., )
Vimax 4
[ vmaxhv_ngZd _ "™9Nhvidv _9NhV ] e ONDV
! 2 !: N 2V 40 8
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Unit—4 The energy is excess of zero point enery
Heat Capacity of

soilds
9Nh Vimax \/3dV
NOTE E= Vg'qax th/KT_—|
4k4T 4
put, x = hy/KT v = > i
X.KT 3 474
V= 4v dv= T Ax%dx

h h?

Whenv = v maxand applying limits from 0 to x, we get
ONh (KT)* v ¢ 3

E= dx
v:  h* -([ e -1

m

Letvo=v maxbe the Debye characteristic temperature defined

mathematically ag}, = h% = hv%

Wherebp is the Debye characteristic frequency.

ORT* 79 "3
E=

dx

6 o€
This is integral can be evaluated in two speciaksa

1. At moderate and high temperature above 30K. and
2. At very low temperature below 30K.

Debye theory at moderate and high temperature

ORT*9T »3

For value of Td the integral can be evaluated by
following series expansion. For large value df the

Self-Instructional Mategrial
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upper limit of the integration becomes small. Fasts
expanded as a power series and divided it intoyMong

division.
X3 _ o2 Xs Xa X%
- X -_ +_ - i
et 2 12 760
E e , XXX g
= — t+_ - H)dx
& [ -2 70

Upon integration
1 1
E=3RT(1-—(0/T)2+__(6 /T)*-
A= oM oy’ M=)

oE 1 1
C=(_) =3R1-_(GT)+" (@ T)-)
vooaTV 20‘I 560/

As T—o the heat capacity approaches 3R as predictedrisgdiins
theory

1. Cv is a function obp/T only and a plot of Cv against6t/ or log
T/06p should yield a curve that is the same for all tbids, the curves
are called Debye curves.

e
T_ 20F
£
'T 15"
X
"-\h 10..
>
O 5
l 1 1 1
08 1-6 2-L
T/gE
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2. From the curve it is evident that heat capacitgroklement
attains it’s classical

Unit—4
He_f‘(} Capacity of value of 3R when Bbis unity.
solas
3.  From Debye equation it is possible to calculate the
heat capacity of any solid element at all modegatd high
NOTE temperatures if Debye characteristic temperatukaedsvn.

Debye equation at low temperature below 30K

9RT* ® " x3dx

E= _
6,° 3 €7
when THh—0, 6/T—wx
ORT** x3dx
Hence, E= _—
6D3 {ex—l
]-°x3dx_i
O et 15
4
0 9RT i
Eo—— —
bs ‘15

_,0E
Cv= (?I')V upon differentiating of energy with respect to

temperature

Self-Instructional Mategrial
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_36R7 (T
15 @

Cv

Cv= 464.6._(1)3
&b

This equation is called Debye third power law.

. According to this equation the atomic heat capaaftglements
is proportional to Tor CV*2.

It is used to determine the heat capacity at vewytemperature
by extrapolation of the curve. This is used to deiee the
absolute entropies of substances using Bw of the

thermodynamics.

. Bp can be obtained from the slope of the curve obthibg

plotting Cv vs. F.

Cy clope=1545

. Whenop is known, Debye characteristic frequengy or vmax
can be calculated using the expres$ion h.o/ K.

. The most significant difference between the twootles i.e.
Einstein and Debye theories is at low temperatliree debye
expression for Cv approaches zero much less rapisllfF—~O
than does the Einstein’s predictions.
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Cy J 3R

1 | ] 1
08 12
T/eD orTf0

It is in this respect Debye theory is superior taskein theory.

Limitations of Debye theory

Op should be independent of the source of measuremgnt
IS not.

Op Vs T should be a horizontal straight line singgis a
constant and independent of temperature. But treree
deviations in the case of Ag and Na I.

In the case of metals there is electronic contitiouto the heat
capacity due to free electrons, which has not laken into
account

Cv=R(T/T;), Tr—fermi temperature.

Debye theory considers the solid to be a homogeneou
continous elastic medium without any definite stuoe. It
may not be exactly correct.

4.3 Non equilibrium thermodynamics

The branch of science dealing with the study of
thermodynamic properties of the system which are ino
equilibrium and involves transport process whiche ar
irreversible is termed as irreversible or non eQuium
thermodynamics.

Onsager reciprocal relation

4.3.1 Postulates of local equilibrium  Onsager
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formulation

Phenomenological laws, onsager reciprocal relations

Onsager theory is based on the principle of miapgc
reversibility which states that under equilibriuronditions
any molecular process and the reverse of this psoeall be
taking place on the average at the same rate. Aicapito
onsager, the rates or velocities of the variousesymf
processes like diffusion, flow o heat etc are Irheeelated to
‘thermodynamic forces’. These are driving forcespansible
for the transport processes.

For example, temperature gradient is responsibieldéav of heat,
and a gradient of chemical potential is the drivieigce for diffusion. If J is
taken as the rate of flow or flux and x as the dorthe flux- force
relationship is of the form

J=LX

Linear laws of this kind are called the phenomegicia relations.
At thermodynamic equilibrium for all processes, thices X% and hence the
flows, X in the system are zero.

Consider a system in which a temperature gradiéngnd also a
concentration gradient exist. There will be a flow of heat and flow of
matter. Let Jand Jrepresent the rate of flow of heat and the ratioof of
matter respectively. If these takes place sepagrafeloX: and 3 a Xo.
According to onsager, if both he processes occoulsaneously, near
equilibrium the flows and fluxes are related by theenomenologicals
equations.

Ji= L X+ LpX, (1)
J, = LoX + X, (2)

In these equations,

‘L 11’ is the thermal conductivity coefficient which agés dand X.
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‘L o2 is the diffusion coefficient which relatesahd X%

‘L 12and Loithe cross coefficients describes the coupling eftiévo
irreversible processes 1 and 2. These are calegiah-efficient.

‘L 12’ represents the heat flow arising from a conceiatnegradient.
‘L oi gives the flow of matter in response to a tempeeaduadient.
Egn 1 and 2 can be written as

Ji=Li Xi + Ly X

Ji = L X + L Xy

The coefficients Ik, Lk Li Lk are called phenomenological
coefficients li Lkk are specialll referred to as the direct co-effitsen
while Lik and L are referred to as cross coefficients.

The rate of entropy production is given by equation
2 JX>0
Substituting for thexJrom equations

X2>0

222

X+L

12

m7m=L>@+a.+L)x
111 12 21

This quadratic equation will be positive if bothahd X have the
same sign and becomes zero wher X>=0.

The phenomenological coefficients must satisfyfthiewing
conditions

L11>0, Lo2>0

(L+ |—21)2 <4aLl,, ( b*= 43-0)

This can be shown as

LX2+(L +L)XX+L X?>0
111 12 21 12 222
+
ol L{X2+(L12 L21)XX +L22X2}>0
11 1 1 2 2
Lll Lll
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L
L{X2+2aX X +&X?+ 2X?-a’X?% >0
11 1 1 2 2 2 2
Lll
I‘12+L21
Lll

L,+L

where,2a =

Lix vax 7+ x2— (B e xys
11 1 2 2

L11 ? 2Ly,
+ 2440 L -(L +L)® 2> ()
22
|—11{( xl axz) [ s 4L1"2 2 ]xz} 0 3
1

1

(X+ ax2)2 is always positive. From equation (3), it is seat t

AL L - (L+L)? »
11 224L 3212 must also be positive

11

Otherwise the term within { } will have a sign wh depends on the
magnitude of XL fiis positive.

SolL +L )®*<4L L
12 21

11 22

Since the term within the brackets { } is positive>0.
Since( +L )*>0,4LL >0, L >0
1 21

2 11 22 22

Onsager showed that if fluxes and forces are plpplpsen, the cross
coefficients become equal

i.e Liz= L2ior Lik= Lvi — (4)

This equation (4) is called onsager’s reciprockitien.

4.4  Check Your Progress

1. Define Heat capacity.
2. What are all the limitations of debye theory of thespacity of
solids.
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3. Define Non equilibrium thermodynamics.

4.5 Answers to check your progress questions

1 Heat capacity is the quantity of heat requiredaise
the temperature of the whole of the substance ¢irolK.

Even at absolute zero the atoms in a solid willviiating

about their equilibrium positions. When the tempa® is

increased the amplitude of vibration increases\abditional

energy of the atoms of the solid is increaseds the rate of
change of vibrational energy of the solid with tergiure that
determine the heat capacity of solids is

aE\/ib —
G WG

2. Limitations of Debye theory

. O6p should be independent of the source of
measurement but it is not.

. 0p Vs T should be a horizontal straight line sifigas

a constant and independent of temperature. Bute tiaee
deviations in the case of Ag and Na I.

. In the case of metals there is electronic contidlouto
the heat capacity due to free electrons, which r@sbeen
taken into account

Cv=R(T/T), Tr—fermi temperature.

. Debye theory considers the solid to be a homogeneou
continous elastic medium without any definite stooe. It
may not be exactly correct.

3. Non equilibrium thermodynamics

The branch of science dealing with the study of
thermodynamic properties of the system which aré ino
equilibrium and involves transport process whiche ar
irreversible is termed as irreversible or non ebdim
thermodynamics.
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46  Summary
Heat capacityis the quantity of heat required to raise the tenapee of the
whole of the substance through 1K.

Einstein theory of heat capacity of solids Classical theories failed to
explain its behaviour of variation of atomic heapacities of solid elements
with temperature due to the assumption that sdiinents absorb heat
continuously. Einstein used Quantum theory to erplall the
experimentally observed regarding the variation hefat capacity with
temperature.

Debye theory of heat capacity of solidsEinsteins theory fails to describe
adequately the behaviour of crystals near absakrte.

In order to determine the distribution of frequescDebye disregarded the
structure of the solid and he treated it as a h@megus continuous elastic
medium the vibrations of atoms are considered asvalgnt to elastic
waves propagated in the elastic medium with diffefeequencies.

Non equilibrium thermodynamics: The branch of science dealing with the
study of thermodynamic properties of the system ctvhare not in
equilibrium and involves transport process whicé areversible is termed
as irreversible or non equilibrium thermodynamics.

Onsager reciprocal relation: In thermodynamics, the Onsager reciprocal
relations express the equality of certain ratiosvben flows and forces in
thermodynamic systems out of equilibrium, but wharenation of local
equilibrium exist.

Reciprocal relations occur between different pairdorces and flows in a
variety of physical systems.
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4.7 Keywords

Unit — 4 Heat capacity
Heat Capacity of a) The constant-volume heat capacity can be calcufatel
soilds the molecular partition function.

b) The total heat capacity of a molecular substantieeisum

of the contributions of each mode.

NOTE Einstein used Quantum theory to explain all the
experimentally observed regarding the variation hofat
capacity with temperature.

In order to determine the distribution of frequesdDebye
disregarded the structure of the solid and he dcedt as a
homogeneous continuous elastic medium the vibraitioh
atoms are considered as equivalent to elastic waregmgated
in the elastic medium with different frequencies.

Non equilibrium thermodynamics: Thermodynamic prape
of the system which are not in equilibrium and iwves
transport process which are irreversible is termasl
irreversible or non equilibrium thermodynamics.

Onsager reciprocal relation In thermodynamics, It's
explains the the equality of certain ratios betwélews and

forces in thermodynamic systems out of equilibriubut

where a nation of local equilibrium exist.

4.8 Self-assessment questions and exercises

1. Define Heat Capacity and explain the Debye thebheat
capacity of solids.

2. Explain the Einstein theory of heat capacity ofdsol

3. Derive Onsager reciprocal relation.

Self-Instructional Mategrial
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4.9 Further Readings

1 Statistical Thermodynamics M.C. Gupta, Wiley
Eastern, New Delhi,1990.

2. Introduction to Statistical Thermodynamics,
R.P.H.Gasser and W.G.Richards, World Scientifing&pore,
1995.
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BLOCK - 2:
QUANTUM CHEMISTRY

Unit-5: Quantum Chemistry

Structure

5.0 Introduction

5.1 Objectives

5.2 One dimensional harmonic oscillator

5.3 Rigid rotator

54 Check your progress questions

55 Answers to check your progress questions
5.6 Summary

5.7 Keywords

5.8 Self-assessment questions and exercises
5.9 Further reading

5.0 Introduction

There are several areas of chemistry that requirewledge of
quantum

Mechanics for their explanation and understandingré&fore
quantum

Mechanics at an elementary level is covered inra¢physics
and chemistry.We will introduce some of the procedwand
terminology of quantum mechanics and some of their
applications.Here complete coverage of quantum areck and
its applications given below.

5.1 Objectives

After going through this unit, you will be able to:

. Understand about the one dimensional harmonic
Oscillator.
. Understand the concept of rigid rotator.

5.20ne Dimensional Harmonic Oscillator

Vibration of a diatomic molecule can be describgdab
harmonic oscillator. Consider the simple harmoniation
of a single particle of mass m attached to a paimd
oscillating to and fro about its equilibrium positi
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Restoring force (f) acting on the particle is prdjmmal to
the displacement x from the equilibrium position.

fOx
f=-Kx

This expression is called Hooke’s law. A force lusttype is called
“harmonic” and the system obeying Hooke’s law idlech simple
harmonic oscillator.

Potential energy V of such a particle is equalh® integral of this
force over the distance it acts

= —Jj(f dx= —f(— KX).dX
-_( 59
2 ),

Potential energy V= ﬁ
2

Total energy of Harmonic oscillatdd =T +V
H I( "o Tk 2)

=|- + KX
\ BTma

Schrodinger equation representing the system oflonensional simple
harmonic oscillator is

[_ o 92 +VJ|(//(X) =Ey(x)
877max

upon rearranging

62
T w()+
aXZ X h2 LE 2

Let h2 y h2 2 ’ 2h
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d w()+8nzm w()-2m K"21,1/()

X x 0

e
KT Jur= -0
X
Changing the variable to
E: \/EX X
x:i
JB
=4
B

Equation (2) becomes
EXAGRIE A G
w@ig \ 5 ) s
Dividing through out by and {nultlply byvVp
d? a
Yo 9= - ()
— 0
Y.
Eigen function:

@ (&) is the solution of this equation. But it is not gé&s
find the solution of this second order differentajuation.
Hence this equation is compared with the seconckrord
differential mathematical equation.

d?u( )+(( +)- ?) ()=

2n 1 x ux O 4
dx®

It is the mathematical equation. The solution g th
equation is u(x’) and contains a polynomial in x".
)= (et S
dx"
ﬁ 32 dn _y2
=(-1)'e2 e —¢€~*
(e e
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x'2

—e2.} H,(x")

where H(x’) is called Hermite polynomial of degree n and heal
roots.

Comparing equation (3) with (4), unnormalised solutof the
equation representing simple harmonic oscillatosteay in its f
guantum state of vibration can be written as

w(&)=c® 1,(€)

where H,(¢) is called Hermite polynomial of degree n and has re
roots.

&=./px
t//(\/ﬁx) = e_';&.Hn (\/ﬁx)

Normalization of the wave function for the oscilats carried out as
follows

- 2'nWn
%n(5W¢mGW-4“- Jﬁ

[- 5]

Hence normalized solution for the harmonic os@las$

wi(€) =4_\|/762 HE ()and

2"n! \/ﬁ

w (x)=I_l/e \2 -“H(f@X)

n LZ” n!Jr

Hn(J,Ex)= Hn(x/;)

5.3 Rigid Rotor

73

Unit -5
Quantum
Chemistry

NOTE



Unit -5
Quantum
Chemistry

NOTE

Rigid Rotor consists of two spherical particlesaeltied
together and the particles are separated by e finied
distance.

Consider a rigid rotor model consisting of two
masses mand m at a distances  and b respectively from
the centre of gravity of the system. Let be the distance
between the two masses and this distance remains
unchanged during rotation and hence it is a rigitbrr
model.

T 1

Moment of inertia of a rigid rotor:

Moment of inertia of the molecule about an axis
perpendicular to the plane of the molecule is

1=>mr?

To get ‘I' in terms of ‘r'. Consider the followinguantities.

r=r, +r,
r,=r -r,
M= My,
|'=myrr+mrr,
=nry(m +m,)

mpry, =myfr,= mz(r - r1)
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m+m) (Mt my
_mrrf+mzm22
I " r

mm(m+m}r2 mm- 2 2

=AM TS Ty T

Schrodinger wave equation for rigid rotor

Total energy H = Kinetic energy + Potential energy
H=T+V Potential energy ‘V’ is taken as zero
Hence H=T+0
And H =T

Let viand v be the velocities of the two particles of massand m
respectively then

Kinetic energy of the rigid rotor

Linear velocity ‘v’ is related to angular velocity’ aso= v/r , where ‘r’
is the radius.

GG Ve,
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Y T=2
2

NOTE (Ia))z 12

T=___ =__

2l 2l

where L is total angular momentum

~

2

o for a rigid rotor

~

Schrodinger wave equation for a rigid rotor is

Hy(6,¢9)=Ew(6.9)

o wlo9)= (69
2l

In spherical polar co-ordinate system
I:2=—h2|( 1 a(sinéfm 1 0%)

. _J+T_4|
ar?l\singag 96 sin® 60¢]

Hence shcrodinger wave equation becomes,

W1 ofsne ) 1 #iy(es) -Eu(es)
A ZILsinHGHK GHJ sin? 80 ¢}

upon rearranging we get

[ii(sineiw(a@h b %y(0,0)|+871 Ey(8.9) =0

sngag\ a6 ) smeoog )
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This is Schrodinger wave equation representingl mgior.

This equation contains two angular variablésand ® and is 2°
order partial differential equation. This equatignseparated into two
equations, which are total differential equatiogsuking the separation
of variable procedure and solved.

Separation of variables:

Total wave function is written as the product obtwave functions,
which are dependent separately on only one vargdeindependent of
the other and inserted in the equation

¥(6.9) = 8o)@y)

ri@a?@'(smgda&g(g)%)w sin 3 Qﬁ_@g(e)% |+8#2| Ef0 @y =0
)

\ \ )
eing 0 o Va Yo
@0 S'né’aezé’“”}|+ Y dqzi%) +J32_8n2 E€e) @)= 0
2
Multiply by "¢
8%
siné’a( 9 7 1 & L8771
_H_a_gksmé?a_gﬁ(g) —&zﬁ-%’) 42— Esin “6=0
(6) %
sin@@( 969\|8nzl 2, 162@
» B"HKSIn 30 (9)} + , Esin 6= —&173— )

Left hand side of this equation contains the fuorctof 6 and right
hand side contains the terms, which depends onlyhernvariabled.
Both sides are equated to a common constant m
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sinf@a( 9 877 29 2,
Unit -5 sine_‘9 A — Esin m ()
0( ®)
Quantum & O 06
Chemistry
NOTE This is called equation.

1
37 % '~ (2)

This equation is calle® equation.
Solution of @ equation:

Upon rearranging equation (2)

02
wﬂw) =g,

0 _
apflo *MR9 =0

This equation is calle® equation.
4, is the solution of this equation.
Qp=Ce™
This is an acceptable solution provided ‘m’ is areger

@ =« p+2m) Sincegis an

angle.
gtimy — etim(w 27)
gtime — etim((p) _ etim(27r)
etimZIT :1
Note:
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(¢° = cos +isin6)
coq2m7)+isin(2mm) =1
This is true only if ‘m’ can take up 0, £1, +2, £&.

This functiong,) should be normalized.

<¢f¢) / W<0)>: 1
[0, 2]

2m

l ﬁ@'%p)dwz 1 (%0) - Céimw)

2m

T[Cc-;r*‘"“".Cer*‘”“"ol(p: 1

2m

c? ‘[dgz):l

el =0

c?(2m-0) =1
cz=1
21
C= i
21

Normalised solution of gequationis g, =—1\/éi"“’”
n

Solution of @ equation:

where m =

The rearrangefl equation is that is equation (1) is multipliedéayand

divided by Sifo.
siln ggg ‘9(0) +(| B- szm 2\0 |0(0) =0
\ )
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0 equation is compared with Legendre equation in

(%E:lr-l?um mathematics. Associated Legendre function is ttetisa
Chemistry of the mathematical equation. The normalized sotutif a
equation is
NOTE @) =m)! ( )
Geo) R cosd
2(1 +m)!

R™ (cosd) is a polynomial in co8 of degree | and ordien.

Hence normalised solution of the schrodiner wauegqgn
representing rigid rotor is

w(6.9)=8e) -9,

[+m I|I+m [+m

— 2 +1 Pm(COSH)Leiimw
200 +my ! J2n
where ‘' is a positive quantity. Two quantum cainahs
are
1=0,1,2,3.............
m=0, 1, +2, £3............ |

This solution is called spherical harmonics and is
represented as

y(6.9) = 66)-Qp)

| +m

A few spherical harmonics are

| m y(g,¢) - 20 +1) _m-Pm(COSH)Aetimw
e 20+m)y !

0 0 y(H,qo)oo :f. 1 =
' 2




1 0 yg, =%cos@

Energy of Rigid Rotor:
Comparing the two equation

(1— ngazu(x — oy du(x +|A’|(| +1)- m, Yu(x)=0

X x| 1- % J

when x = cos?

1 9 d ( m?

. sinf__@Qs+ B- G5 =0
sianHSln ag " |k’8 sinzé?)(ﬂ)

we get B=1(1+1) e
()
Hn

_1(+Dre

where | =0,1,2
87

E

1. Energy of the rigid rotor depends on the valuelsamid
independent of ‘m’.

2. Energy of rigid rotor is quantized.

3. Energy increases with increases in ‘I’ value.

5.4 Check Your Progress

1. What is meant by Hooks law?
2. What is wave function?

5.5  Answers to Check Your Progress Questions
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1. Hooke’s law is named for Robert Hooke,Accordingtiie
Hooke’s law ,for a particle executing simple harmcomotion
in one direction, the restoring force F is diregilpportional to
the displacement x from the equilibrium position

Foao—x

F=—-kx
The negative sign indicates that the displacemergnd the

restoring force F are in opposite directions.K isgortionality
constant called the force constant.

2. The eigenfunctions of a quantum mechanical opedspend
on the coordinates upon which the operator actsetfiunctions
are called wavefunctions.

5.6 Summary

» According to classical mechanics, the state ofstesy is
specified by giving the position and velocity ofeey particle in
the system. Consider a single particle withoutagrnal
structure so that it cannot rotate or vibrate.

* If it can move in three dimensionswe can specgypibsition
by the three Cartesian coordinaxey, andz.

» These three coordinates are equivalentgostion vectothat
reaches from the origin of coordinates to the liocedf the

* particle.

» The Cartesian coordinatgsy, andz are called th€artesian
componentsf the position vectar.A vector can also be denoted
by listing its three Cartesian components insidemieses, as in
Xy, 2)

* In order to show how Newton'’s laws determine thiedweor of
a particle, we apply them to a harmonic oscillaidrich is a
model system designed to represent a mass attaclaed
stationary object by a spring,Aodel systens designed to
imitate a real system, but is defined to have semptoperties so
that it canbe analyzed more easily.

» Let the horizontal coordinateof the mass equal zero at its
equilibrium position and assign it to be positifzéhe spring is
stretched and negative if the spring is compressed.

5.7 Keywords

» Harmonic oscillator: A System which,when displaced from its
equilibrium position,experiences a restoring fopceportional to
the displacement according to Hooks Law.
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. Rigid Rotator: The rigid rotator is a simple model of a rotating
diatomic molecule.

5.8 Self-assessment questions and exercises

1. The frequency of vibration of a 1H35CI| molecule is

8.966 x 1013 s-1.

a. What would the frequency be if the chlorine atonreniafinitely
massive?

b. What would the frequency be if the hydrogen atomewefinitely
massive?

2. What do you mean rigid rotator? Write a note ordrigtator in a
plane.

3.Apply Schrédinger wave equation to a system ofirigitor and
solve the equation

5.9.Furthur readings

1. Quantum Chemistry, I.N. Levine, Allyn and Bacon, Boston,
1983.

2. Quantum Chemistry, R.K.Prasad, Wiley stern, New
Delhi,1992.
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Treatment

6.0 Introduction

6.1  Objectives

6.2 Quantum mechanical treatment

6.3  Hydrogen like atoms

6.4  Pauli’'s exclusion principle

6.5 Slater determinant

6.6  Approximation methods

6.7 Variation method

6.8 Time independent perturbation

6.9 SCF methods

6.10 Check Your Progress

6.11 Answers to check your progress questions
6.12 Summary

6.13 Keywords

6.14 Self-assessment questions and exercises
6.15 Further reading

6.0 Introduction.

In this unit we can elaborately understand Quanteunhanical treatment
for radial and angular wave function and hydrogemealike atoms.

6.1 Objectives

After going through this unit, you will be able to:

. Understand the concept of Quantum mechanical teggtm
. Understand pauli’s exclusion principle and slagtedmninant.
. Learn about the Approximation methods.

6.2 Quantum mechanical treatment

Hydrogen atom is made up of a proton and an elecewolving the
nucleus.

The potential energy of the electron is due toelleetrical force
of attraction between the electron and the nucleus.

e

r

gvs=

Therefore Schrodinger equation for the hydrogesa éitom can be
written as

84



2y 7 (E ~V)y=0

D2+ 87T n](E Ze2 =0
el )

This can be solved by transforming the Cartesiaardmates x, y, z
into spherical polar co-ordinater,d.

62 az 62 = DZ 19 (r \ 10 ( sin 0_\ 1 02
+ t— T anZ A2
o V <292 L J r? sinHGH( GHJ rsin® 6og

1a( oy, 1 a(lnﬁal//\] 1 Py 8n2n|1(E z& ly=0 - (1)
r ark arj r? sianHk 66?) r2sinf@ogf N2 { r)|

Separation of variables:

w=R(r).0(8).d9- (2)
Substituting (2) in equation (1), we get

10/ *49d” ()), 1 0( o 0o’ 49+ 7 p)

\L ZeZ\ar R) r? smH@Hksm Rt 99 r’sin’@ aqf

Multiply by r?,
(9)¢(¢) (2_ r)) R{r)gQ)‘MSInB_Jm(H)“ %)4454(0
8772mr2(?r Qez\
R0 8(0)lo) =0

Divide by R(r).8(8).4 ¢
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1 9(,0 (\), 1af g0 e(e)\+— azcﬂ(w)
R(r)—ar{ () 9(49)sm6?66?|\ 06 J A P)sin® 6 0
=0

8r°’mr? (E Zé&
+ |~
h? L r |)

Multiply by sir?6, 2
sin? 06(2 ()\ sin 90( QQ 9(93 L0 d o)
R, Ao RT) 6’(5’)69\ A9) o
?ﬂ mr2 sm FE+ } 0
h2 L r

sin?60(,0 ) sngd( 9 \ 8FmPsinfel  zé\ 1 d9)

makr P ()| EGE HLsmH 9‘9(9) |—h2 |E+—|——m e

Left hand side of the equation contains the vagsbland
and right hand side contains the varialbesEach sides of the
equation is equated to a common constant Sasuch that

L 7 do)-
do) og

A9+ =0 - (3)

m

The equation (3) is calle® equation.
sin 6’0( 2 0 R(r)\+5|n6? (smé? 6?(49)\+8772mr sin” (g Zez\| nf -
R(r) or arl o J e(e)ae( 26 J h? 6( o)

Divide the equation by sif and upon rearranging

1 a[’ 2 9 R(r )\ L Mg 9 6?(6?)\|+877mr2(|5 z& )= n?
R(r)ar\ o J H(H)sm@@HL 00 ) M L r ) sin?@
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1 a( aR()\+8n2mr2(E Zez} o~ 1 %ng® 0(9)\
R(r)ar\ or h? L r ) sin2@ H(H)smHOHL 26 J

Left hand side as well as right hand side of theaéiqn contains only ong

variable and hence both must be equated to a cornomstanp.

19 _ P
- Sin G-
sin’6 9(8)singag 9

1 9 sin 50 a () ﬁ__
0(8)sin 606

,0(0)=5

Multiplying by 8(8) and rearranging
L 9%n6%a(6)+ 13- ™ Ya(6)=0- (5)

singagd 98 L sin’6)

This equation is calle@ equation
1 6[’ 2 0 R(r)\+877'2mr2 (e ZEZ\| B
R(r)ark or h? L

r

Multiplying by R(r)/r?

16( o R(r) -7 R(r)+ 87°m(E e 1R(r) =0 - (6)
ark or r? hz’TL f|}

This is called radial equation or r equation.

Solution of ® equation:

@ equation is
9° _
W(/((”)Jf @) =0

The solution ofd equation is

timg

dg)=Ce
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Normalised solution o> equation is

1 zimg
Ap) =
Nvid
+m
Solution of @ equation:

Theo equatlonals
sm@ 19((9)+|(,5 ) \{9(9)=0
singod a6 L sin 6’)'

Associated Legendre function of degree | and ondér the
variable co9® represented as PR"cos@is the solution ob

equation.
Normalised solution o equation

6(6)= [EEmI=ml
2(1 - m)! "

| + m

The product of solutions @ and® equation is spherical
harmonics that is
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Y. m(09)=600)-49)
[+ml+m
Solution of radial equation:

Radial equation is

N B o()s 87
1905 200 Pl s, 28 py o

2 or k ar r2 h?

The solution of this equationir).

R(r) \/(22\ |4(n—l ~1)1g? 24( )p

\ng ) 2n(n+I)

where _ 2zr 5  , and 5 1p() is the associated Laguer
P~ ’ = L.
na, Arréu |
polynomial.
Hence the total solution of the wave equation is

w(r.6.9)=R(r).6(6).49

n,l,+xm n,| I£m |l#m

W(r,a(ﬂ) (22\|4Me 2 pl L2|+1(p) \/’(Zl__l_)_l—mpmcosg 1 +|m(p
nl,l+m \nébj 2n(n+|) n+l 2(| n m)' \/277

6.3 Hydrogen like atom

The co-ordinates of electron of Helium atom camdpresented ag

1

T
n 12

Electron

Muclens 12

Hamiltonian operator of Helium atom is
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For the ground state of Helium atom, the electronic
configuration is 15 The overall wave function will be given
by a slater determinant.

N
Vo= 51%1%

this on expansion may be written as

w:ilsls[aﬁ —,Ba]

o /2 W @ 006 OO

According to variation method, the energy, E basedhe
approximate wave function is always higher thae &uoergy
E, of the ground state.

E =W/ Hith)

1
=71§1S HS IS \,a B -Ba la f -Ba
2< D@ | (2)\>< WO 00 060 06)
= 2< S0%0[H % /S \>2
E= <18(1)1S(2) HIS) /S \>

Hamiltonian for Helium atom is

H=H +H +'  1g1s
) (2

1
!
Hy*He 7 js (1)15(z)>

E :<15(1) 159

E:<<

115

H 151S 1S1S
el o e el )

H 1S1S .+, 1S 1S
o ol o o ol (|
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E= @S(l) I ey 1St (1S0/15 ) + 1S e 110 (150 150)+ 9
E= ElS(l) + ElS(Z) +J

J= 1&) 1s))

J is called coulomb integral.

ihs(l)lseb

In a two electron atom, the average potential egpeed by an
electron varies betweeﬁf and —Ethat IS it depends on the effectivg
f ri
nuclear charge ‘Z’. The best value ofidll be determined by the
variation principle.

The wave function of 1S orbital appropriate to #fiective nuclear
charge Zis
3

1s= (1)2 e—Z'r

i
The result of calculation then leads to
E=-2%-2(2-Z) Z'+5/8 Z
=72-27/18 Z

The value of Zwhich minimizes the energy is found by differetitig E
with respect to Z

OoE

Settin =0, we get
g o7 g

2=2T=169

16
O E=-2.847da.u)
(1au=27.2v)

E=-77.4&8V.

U
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6.4 Pauli’s Exclusion Principle

Pauli’'s exclusion principle states that “The totahve
function of electron must be antisymmetric undee th
interchange of any two electrons or no two eledronone
and the same orbitals can have all the fact quantumbers
same”.

The four possible product combinations of the attand
spin wave function for He atom in“state is

(15(1)18(2) )(a(l) / 0'(2)) SxXS=S
(5415, By B) SXS=S
(15( 1S )i(a B +a ,3) SxS=S

)RG5 0O @0
1
s1s (@ B -a B) sxA=A
) Oz 0O @O

Symmetric (+) x symmetric (+) or

Antisymmetric (-) X Antisymmetric (-) is symmetr(¢),
but

Symmetric (+) x Antisymmetric (-) is Antisymmetr(g

Complete description of an electron is given byspim
orbital wave function

(r, s) =(r) n(s)

d(r) is the orbital wave function, which is a furasti of
the position variable amgl(s) is the spin function involving
spin variable.

Spin orbital wave function is obtained by multigin
each of the orbital function with those of the sfinctions.

(r,s) =0(r) n(s)
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v= 1 (A)A+o(1) A2)(a .a )

20 OO
SxS=S
_(40(1) ¢(2)+¢(1) A2))(8 B)
2 N OYe)
SxS=S
1 () +o)elDNap +4 a )
ﬁ 1 1 @ O
SxS =S
y=1 (¢()¢(2)+¢(1)¢(2)) (ap -Ba) SxA = A
J2 ! 1 W@ 0
w=1(p (1)40(2) 40(1) A2)(a .a ) AXS=A
20 O INC)
w=1 (p1)e2)- ¢(1)¢(2))(ﬁ ,6’) AXS=A
N
v=1 (A)eA2)- ¢(1)¢(2))(aﬁ +fa ) AXS = A
J2 ! 1 @ 0@
:i(d)w(Z) ¢(1)¢(2)) (aﬁ -Ba) AXA=S
NP 1 @ e

Of the eight possible combinations only four conallions are

antisymmetric and they are accepted according toli'®aexclusion
principle.

v (r.5)= 1 () A2)+0(1)A2)) (@p -pa )- ()

A \/— 12 O 0O
v (r.9)= 1 (A)A2)-0(1) dA)a.a )- (2
\/E 1 @® (@
p(rs)=1 (w(l)-¢(2)-¢(1)-¢(2))(ﬁ.ﬁ )~ (3)
A JE 1 2 2 1 ®» @
v (r.5)= 1 (A)A2)- () A2). (@ +pa )-(4)
\/E 1 0 OO

To prove Pauli’'s exclusion principle consider etqua(4)
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v (r.9)= 1 (A)A2)- (1) A2)) (ap +Ba )

A \/— 1 2 1 ® (2 ® (2

This can be written in the Slater determinantairfor

= (40(1) o(da B +o()A2Ba -oD)da B - (A8 a )

1
T 2 W@ 1 2 ME 2 + @O 2 1 OO

= (o) 0@ o901 7)) 9(2)
2

w9 =" a(1) @(1? 1 ¢(1) gq(zi
A LR @2 \/7_@ »(2

When both the electrons are in the same orbitals

®1= ®,. Therefore the determinant becomes

(r 5) = 1(2) a(l) L1 i)@(l @(2{
Vi \/_ ) a@) 2 a(2

whena = )

) @(1% alt @(z{
1

a(2

When two rows of the determinant or two columns of
determinant are equal then the determinant vanishesis
equal to zero. The wave function also vanishescel@o
two electrons in one and the same orbital can hd\be
four quantum numbers same. Pauli’s exclusion pgoleds
proved.
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6.5 Slater determinant

In order to construct antisymmetric wave functiond multi-electron
atom, the increase in the number of electrons asae the number of

terms in such large proportions [for ex: 5! i.e 1@ns for an atom with %

electrons only]. We must find an abbreviated foomepresent a wave
function. This can be done by writing it in therfoa determinant in
which the spin-orbitals are the elements, eachinave determinant is
labeled with an electron and each column with a sphital.

The normalized wave function for a three electrtmmais written as

w =1 P % (g
- Jal A B(z) ®) )
6 A(s) Be Cp

For an n electron atom

By oo
AU, - (2)
- W 2) @)
n) B(n) ......

The antisymmetry of equation (1) or equation (2)vali as Pauli’'s
principle are guaranteed by two properties of deit@gnts.

(1) If two rows (or) two columns of a determinant areerchanged ,

the resulting
determinant is just the negative of the originad,are
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Ay By Conl Az Bep) Cp

A» Bo Cu|=-|Ay By Cu
Ae Br Cp As Be Cp

(2) If any two rows or two columns of a
determinant are the same, the determinant
vanishes.

For example:

The ground state antisymmetric wave function for He
atom in the determinantal form and to prove thatttino
electrons cannot have the same spin-orbital.

W_ =[15,1S,)(@wBe) ~ AB)

= 15 0)- 158 ~|1SwB- 1599

_ rs(l)%) 18080 3)

1S90 180

where 1§ is the spin-orbital of electroni (i=1, 2)

If both electrons have the same spin-orbitals diéterminant

_ F(l) au) 15(1)”(1J -0

1Sy, 159

With increasing number of electrons, even the deteant (2)
will have large size and further abbreviation isessary. This
is done by using a bar over the orbital which hapin,
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absence of a bar will indicatespin. Thus the determinant
wave function for Li atom is

1S, 1S, 2
=1 1S 480 53
- G e @ o

199 189 299

6.6 Approximation methods

Need for approximation methods:

1 Schrodinger wave equation cannot be solved exattimany electrom

atoms because the presence of more than one eléctroduces electro

N
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repulsion terms (@), where i is the distance between the two electrons.
This rj term depends op and@ coordinates. The separation of variables

Is not possible and is very difficult.

2 Again the Schrodinger wave equation cannot be dodxactly for one
electron systems, whose potential field is not sphlty symmetrical e.d.

Hydrogen atom subjected to electric or magnetidfie

Hence to obtain the solution of the wave equationtiie above

systems approximate methods are used. The two catymased methods
are

(i) Variation method

(i) Perturbation method

6.7 Variation Method

Variation method is an approximation method. Wsed to those systems,
which differ much from the systems, for which exaotution is known
In this system the wave functions can be guesssddban physical and

chemical combinations and the energy of the syséeralculated by

E- <l//|H ’Ql/>
W)

E =(¢HY) whereH’ is the complete Hamiltonian of the system

whenyis normalized, then
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Variation theorem states that “if be the normalized trial
wave function satisfying the boundary conditions @f

system, whose HamiltoniarH has a discrete  eigen
spectrum”.

Then
(YH) 2 Eo

where Bkis the lowest exact Eigen valuetof.

The wave functionyis called trial variational function and
the integral (¢/Hly) is called the variational integral. The

energy calculated by variation method will alwagsgoeater
than the true energyEe. the lowest eigen value Hf .

Proof of variation theorem i.e. proof for (¢/Hy) 2 Eo

Let @,@L,@,¢s.....0e the set of normalized and mutually

orthogonal eigen functions of with discrete eigen values
Eo,E1, B2, Es,etc. such that

Hg=E@ 1=0,1,2,3.....

Let ¢be a normalized trial variational function. Lgbe
expanded in terms of the orthogonal set of funestica ¢ =

Zi Ciw

Multiply by ¢ and integrate over all space,
(@y=(X calX.ca)
= 2. 99)

W)= c?=1 [y is normalizedy ¢ )= 1]

Considering the variational integral
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E =(yHp)
E=(Y.caH|X,ca)
E=(a+Ca+Ca+. 4 [Ca+Ca+Ca+..)
E=Y. C@hpdY LCoid ) - @)
Moreover, (gH|@) = E - (a)
(arla) =& (dg)=0- ®
Then (1) becomes

E=> C°E +0 [The second summation in (1) vanishes due to (b)]

If Eois the energy of the lowest state or lowest EigglnesofH™ then
E-BEo=) CE-D,CE [+, F°=1]
E-B=) C(E-E) -

The quantity E - E, must be positive or zero for all values of i andi€

always positive, the R.H.S of the above equatigm{@st always be
positive or zero.

Hence E-E=0
E>Eg
(YHY) = Eo

This is variation theorem.

6.8 Time Independent Perturbation
Perturbation method Is an approximation
method used to solve the wave equations repregethin
systems having more than one electron. This mathod

suitable for a system, which are subjected to wergk
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electric or magnetic field and also for the systehnose zero
order states are non-degenerate.

Unit -6

Quantum Conditions under which perturbation theory is based

Mechanical

Treatment 1. The total Hamiltonian of the
NOTE perturbed system is the sum of the parts (i)unpeetl

HamiltonianH © and(ii) perturbation

H=HO+V

whereAV is the perturbation andlis the expansion
parameter.

2. The system is only very slightly disturbed and eliént from
the system for which the exact solution is knowenV is
very smallcomparedoH @

HOY)AV

3. The eigen value€® and eigen functiong/? of the
unperturbed Hamiltoniard @ are known.

H (0) l//(O): E(O) l//(O)
4. If yis the wave function of the Hamiltonian of the peoed
systerrH with eigen value E then the eigen value equationis
Hy =Ey
HO+ ANV)y=Ey

The wave functionyand energy E are functions .bfaind
hence it is possible to expand them in terma iof the form
of power series as

Y=gO+ gD+ Y@+ By + (1)

And
E=EQ +IED + E®@ + PEP + (2)

Wherey®, ¢®@......ande®, E® .... Etc are independent 4f.
wWandy® are chosen such that they are orthogona®p
which is normalized.

5. The equation of the perturbed system is
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(HO+ A + A® + Ry® +..)= (B + AED + PE@ + )W + Ag® + Py + )
The order of accuracy depends on the number ofstehasen in the

above equation. Since the perturbed system isshiglytly different from

the unperturbed ones©®and E® may be chosen as approximate solutio

of the perturbed system. This is called zeroth oaggroximation to the
true solution of the perturbed system.

If the second term in the series thasisg©@ + A¢® and

E=E©@+ AE®are chosen and the schrodinger wave equationisdil
will give rise to first order approximation to threle solution of the
perturbed system.

H Oy = g€ _, Zerothorderperturbatiorequation.

(A - EO )y = V) + EGYO . First order perturbation equation.

First order perturbation theory:
First order perturbation equation is

m@_E@pm:ywm+gw@

By solving this equation first order correctionthe eigen functiony®
and the first order correction to the eigen val® are obtained theg
and E are calculated.

w:w(O) + /]w(l)
E=E©®+JE®

@ ande® are known for the given system under consideration.

First order correction to the energy and approximage energy of the
perturbed system

ns
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(I—] o) Ei(o))al(l) =V + EYy " is thefirst order
perturbation equation for th8 state 4@ is expanded in

terms of the complete set of eigen functions of the
unperturbed Hamiltoniad © . The unperturbed equation is

where i = 0,1,2,3 etc.
WOYOYO ... yf ‘//go) etc belong to orthonormal set of

functions andg,© is non-degenerate.

p® =3>cy . (a)

j#

Multiply by ¢ and integrate over all space

<w(0’ku(l’> ZC< YOy =0

J#l

Since the wave funCtIO{ZV(O) is orthogonal ta//(o) Hence
w(") is orthogonal toy @

Substituting the value qt/j(l) in the first order perturbation
equation we get

(H°—E )Z ©) = vy + ENy©

j#i

> G [H® - EO©] = vy + EVy©

jil

HO wgo) = E(J.O) W j(0)
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S C(ED-EQ)pO =~ O +EDy©

j#

Multiply by ¢©) and integrate over all space

Zc”@@ EQ - EO PO ) =~ OM O+ D OpO)

ZCu (Ej(o) _ Ei(o))<‘//i(°) )w(jo) > —_ <l//i(°) M‘»”i(o) > + Ei(l) <l//i(0))¢i(o)>

¢ andy @ etc belong to orthonormal set. Hence
i j

<¢,i(o)‘,/,§0)> =0and <¢,i(o)‘[/{(o)>: 1

_ <¢, i(o)M 4,«7 +EO
E(il) = éj(io) }/14[{(0>

Hence first order correction to the energy of thstate is

0 = <ﬂ(?) W‘/’i@>

E @ is the first order correction to the true energye Bpproximate energy

of the perturbed system according to the non-degenéme independer
first order perturbation theory is

E =E”+ 0
E=E9+ ) é/(io) V‘w(%

First order correction to the wave function:

First order perturbed equation for tifestate is
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70 _ =0)},@ — 0 @,,,0
(0 - EO )y = V0 + EYy

wWis expanded in terms of a complete set of eigen
functions of the unperturbed Hamiltonian

pV=3cy

j#i

¢® and ¢ © belong to orthonormal set. Substituting this in
perturbation equation

J0 _g) (0 = o7y (1)4(0)
(HO E.O)Zcuél’o - Vwio +Eilwio

j#i

H Oy O =0y

S C(ED - EQ) O = - O+ ED O

j #i
upon expanding the summation we get,

put j=1,2,3,4 e for tHstate.

(0) _ (0) y,,(0) () _ =(0)y,7,(0)
Cil(E 1 E i )l/j1 +Ci2(E(20) _Ei(o))wéo) +Ci3(E(30) _Ei(o))wéo) +Ci4(E4 Ei )w4 ¥
=V 44,(0) + 5(1)41/(0)

In order to obtairC multiply both sides byy© and
il 1

integrated over all space
(E(O) - E(O))Ql@ @V@}‘ - %(0)1\( 40(i0) > E(l)i ¢<(0)144 (0? >
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Since the zero order wave functions are orthogandlindividually
normalized

A R A U A

)

" (E9-E0)

o )

T (E9-EO)

ot

“T T ET-ET)

< (O)M‘” >

i (ED-EO)

Substituting the value a in ¢®
ij i

ON]y©
wi(l) = Z (E(O) _ E(o)) [//EO)
j i

iZ]

wWis the first order correction to the true valuediion.

E© z EO@
j i

Thus according to the non-degenerate time indeperinlst order
perturbation theory.

Approximate solution of the first order perturbatiequation.
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w =p O+ Z IV o
» (E(O)—E(O)) j

This relationship is not valid if there is degergran the
eigen spectrum df © that isE —jEfoir i#j.Foritto be

valid ground state should be non-degenerate.

6.9 SCE Methods

According to Hartree each electron is assumed teenmo
a spherically symmetrical field due to the nuclaod the
average potential field is due to all the electrexsept the
one under consideration. This field in which eleatmove is
called self consistent field.

The wave function of an atom containing ‘n’ eleasas
written as product of ‘n’ number of one electrondtions that
IS

¢=a()@2aB) an)

where g, @,@¢ . @ are the normalized and mutually
orthogonal one electron wave functions.

@ (1) meangheelectron(1) is putin the orbital ¢.................
etc.

The antisymmetric wave function of the atom is esged
as a determinant.

a() a@) 20 @@ ... a()

1 1(2) a2 22 @2 ... (%1—(2)
¢‘ \/; | )

@a(n) QE ® (n) @W ........... %E.
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For an n-electron atom with closed shell configoratthat
is in which all atomic orbitals are doubly occupieih paired
spins.

where the determinant has been represented thabhagbnal
elementsg(1) is the spinorbital with electronl, ¢ (2) with electron2, in
the same orbitap, and so on.

Fock introduced a new opera®rknown as Fock operator. It is an
operator for kinetic energy of electron, potengiaérgy of inter electron
repulsion and potential energy of electron spirhexge between pair of
electrons.

The Fock operator for electron is defined as

£ =-1p2-243 (23 -k)
! i i

(1) 2 rl i=1

—i 0% represents kinetic energy operator forelectron
2 1

—Erepresents operator for potential energy of attvadietween electron
ry

1 and nucleus.

J, represents operator for potential energy of repalbetween electron

1andf
electron.

K, represents operator for potential energy of charigpin between
electron 1 and']

electron.

The potential energy of repulsion experienced kgtebn 1 in the field
of electron j is given by the following operater J
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i i i
i

The sum of the operator for the potential energy of
repulsion experienced by electron 1 in a field\a#rg other
electron of the atom is expressed as follows

ZJ_ zj_(p (pdr

I iT 0
j=1 i=1 i

The potential energy of exchange of spin between
electron 1 and electron j is given by the followwpgerator
K1

1
K= [@ @dr,

There will be exchange of spin between electrondLrd2
number of electron with opposite sign. Thereforrdhwill
be n/2 number of such operators. The sum of thesetor

iszz: K;
j=1

Thus the Fock operator for electrorlfaj is described.
Similarly the Fock operator for other electrons e#so be
formed.

A set of orbitals without sping,®, @

variable parameter in each is chosen. Usmg thessions, a
setof Fock operators,, F, F, Fuy F, were

formed. Substituting the above wave function webkpective
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Fock operators and so having the following “Pseudo-
Schrodlnger wave equation”. A set of wave functions
13 I @ ‘were obtained

. Usin%the new set of wave functions, a new, setoakFoperators

|f( FLF LF F are formed and using,@ ,@............ @,
) @ 6 @ 7 1 2 3 n

the pseudo schrodinger equatlon is solved to get af functions

QPP ... @ This process is repeated till we get a set otalgh
1 2 3

2
which are not very different from the previous Jétis set of orbital is
called self consistent field (SCF) Orbiltaﬁf¢3,2¢sg¢s .....

6.10Check Your Progress

1. State Pauli’'s exclusion principle
2. What is meant by Slater determinant?
3. Write notes on self consistent field method .

6.11Answers to check your progress questions

1 Pauli’s exclusion principle states that “The totave function ofelectron
must be antisymmetric under the interchange of taryelectrons or no tw
electrons in one and the same orbitals can haviéhalfact quantum numbe
same”.

2. Inorder to construct antisymmetric wave functiond multi-electron
atom, the increase in the number of electrons asa® the number of terms in
such large proportions [for ex: 5! i.e 120 termisdn atom with 5 electrons
only]. We must find an abbreviated form to représewave function. This carn
be done by writing it in the form a determinanthich the spin-orbitals are th
elements, each row in the determinant is labeléd &n electron and each
column with a spin orbital.

e

109

Unit -6
Quantum Mechanical
Treatment

NOTE



Unit -6
Quantum
Mechanical
Treatment

NOTE

3. According to Hartree each electron is assumed teenmoa
spherically symmetrical field due to the nucleud #re average
potential field is due to all the electrons exddgt one under
consideration. This field in which electron movealed
self consistent field.

6.12Summary

Pauli’'s exclusion principle states that “The totalve function of
electron must be antisymmetric under the interchasfgany two
electrons or no two electrons in one and the sarbgats can
have all the fact quantum numbers same”.

For many problems, it is not practical to obtawwave function by
the exactsolution of a wave equation that desctibesystem. It
is still possible toperform many types of calcuas, and one of
the most useful techniques is that known as thiat@n method.
The exact solution of the Schrédinger wave equdboromplex
atomsis not possible. However, examination of trefof the
wave functions obtained for the hydrogen atom ssiggibhat
approximate wave functionsmight be obtained if vezeno take
into account the mutual electronrepulsion. Suchoagdure has
been devised by J. C. Slater, and theapproximate fuactions
that result are known as Slater wave functionsS|ater-type
orbitals (STO)].

Perturbation method is an approximation method tssolve
the wave equations representing the systems hawimg than one
electron. This method is suitable for a systemcilaire subjected
to very weak electric or magnetic field and alsotfe system
which zero order states are non-degenerate.

According to Hartree each electron is assumed teenmmoa
spherically symmetrical field due to the nucleud #re average
potential field is due to all the electrons exddgt one under
consideration. This field in which electron movealed self
consistent field.

6.13Keywords

Radial wave function: An orbital in a mathematical function
called a wave function that describes an elecinami
atom.Radial wave function for a given atom depemigt apon the
distance, r from the nucleus.

Angular wave function: Angular wave functions depend only
upon direction and in effect, describes the shd@aa orbital.
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» Petrubation: The act of disturbance, in physics a secondary
influence on a system that modifies simple behayisuch as the|  uUnit -6
effect of the other electrons on one electron iatam. Quantum Mechanical
Treatment

NOTE

6.14 Self-assessment questions and exercises

1. Discuss the principle of variation method.

2. What is meant by Slater determinant? Obtain itaevébr helium atom.
3. “For many electron systems only approximation meéthare needed”-
Explain.

6.15Further readings

1. Quantum Chemistry, I.N. Levine, Allyn and Bacon, Boston,
1983.

2. Quantum Chemistry, R.K.Prasad, Wiley Eastern, New
Delhi,1992.
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UNIT- 7 HMO Method

Structure

7.0 Introduction

7.1 Objectives

7.2 Application of variations methods to hydrogen atom
7.3 Application of perturbation methods to helium
7.4 HMO method

7.5 Application to butadiene

7.6 Check Your Progress

7.7 Answers to check your progress questions
7.8 Summary

7.9 Keywords

7.10  Self-assessment questions and exercises
7.11  Further reading

7.0Introduction

when the phrase “molecular orbital calculationsfirst
encountered,

the mental image may well be one of hopelessly dicated
mathematics and piles upon piles of computer outpigt
interesting to note, however, that sometimes divels simple
calculation may provide useful information thatreteites well
with experimental observations. Such is the casle the method
known as the Hiickel molecular orbital (HMO theazg)culation.
This method was developed in 1931 by Erich Hucke@lhysicist
in Marburg, Germany, who was trying to understdreldoncept of
aromaticity in benzene. The calculational proceslare relatively
simple and have become known as the “back of aslepg”
calculations.

7.10bjectives

After going through this unit, you will be able to:

. Explain about the application of variation methtms
hyderogen atom.

. Understand the concept of HMO method and applioato
butadiene.
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7.2 Application of Perturbation method to hydrogenatom

Unit 7
HMO Method

electron

Hamiltonian operator of Hydrogen atom in atomictsini

——1Tr

r?or or r?sin6dd 90 r’sin0o¢g

Hydrogen atom is spherically symmetrical and heéheewvave function

has no nodes angis independent df and®.

Hence 0% = 1_ir 20
r2or or
And Hamiltonian H = _1[16 2 6\_1\
= — -
\o2lrfor o r/J
The wave function for hydrogen atom is chosen liipitive means. Lét
w — e—ar

where ‘a’ is the variable parameter.
The energy of the system is obtained from the tianal integral.

= PP

()
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o 1f 20 1 4
RAPEERYE S

T 7
<e—are ar>

Jfle*r- 1 0 2__ L&\ 2sin @drd@dg
E =000 | 2r? o' are r )
© 71271

t[Joje‘ar.e‘ar.r ? sin drd&dg

1 ar—| .
je | - 2_ re- ar(_ )J ¢ rdrjsmédé’!d¢
E:o I— o K ZJT
J'l_za' 2drjsm 6UHJd¢)
a
e (rze‘ar a+e""’2r)—er —\ “dr
g0 2" ]
je‘zar.r zdr
0
o _ |_( —ar —ar
AR
g=d L 2 r) ']
J;e‘zar.rzdr
o a2 o0

_———plar, 2 + —2ar _ | q2ar
E:J 2 e r adr 0J.a.e .rdroj.e .rdr

je‘ 2 r2dr
0

2 © o0

E= _YIe_Zarrzdr + aJe‘zar.rdr —nje‘zar.rdr

00

j F2ar ¢ 24y

0
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E= 21
(za)2+1
O N RO I
E-_8 4da 4a_. _a 2a 28
2 8a2
8a° 2
a’-2a
E=
2
Energy is minimized with respect to a
a_E: 0
oda
d(a’-2a) 1
— =—(2a-2)=0
dal 2 ) 2( )
a=1
Hence the wave function is
y=e"
Energy
a’-2a
E=
2
E= 1-2 = —_1 au
2 2

This represents the exact value of energy and exgeh function for
hydrogen atom in its ground state. Any other wanecfion chosen will
always lead to an energy greater than the lowesitenergy of the
system.

Unit7
HMO Method

NOTE

7.3 Application of Perturbation Method to Helium

The coordinates of electrons of Helium atom canelpeesented as
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Un|t 7 1electron
HMO Method

NOTE

Mucleus 2 electron
h&]

Hamiltonian operator of Helium atom is

1, 1., 2 2

H=-"0?-"0°-" +1_inau

1 2 "
2 2 r-1 r‘2 r 12

H=H+H 1
) 0T
12

where Hyand Hyyare the one electron hydrogen like
Hamiltonians of the system.

For the ground state of Helium atom the electronic
configuration is 15

Slater determinantal form of overall wave functain
Helium atom is

1 -
Wo=ns(1,2)=yas(He) = ﬁ\lﬁl)ls(z)‘

=L(s1s o B -Ba )
5000 00 0

This is the trial approximate wave function. Acaagito
variation method the energy based on the approginvate
function is always higher than the true energgfihe
ground state.

== v
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O @ 00O

E :(11(1513 ) s ﬁahl(lSls Na B -8 a

1s T W @ 0O @ ®©
( (X

<1S(1)1S(2 HhsylSy b - Ay )

=1(151s ?H (1s1s )2
) el 1Y o

= (15150 JH [1S015))

Hamiltonian for Helium atom is

H=H, +Hg + —
.

@
12

Eis= <(15(1)1S(z) *H m+tHa+ rilz‘(ls(l)ls(ﬂ )>

e <(1S<1>1S<2> ) o] (150250 )+ (15150 JH (1525 o250 )(ri

® (@

Ess= <(1S1)\H<1) FS)><(1S@)1% )+ 1800 Hoo 15 1815 )+ 9 >

ElS: ElS(l) + ElS(Z) +J

E.s()is the energy of electron in the 1S orbital of Helium and J is

called Coulomb integral. It is defined as Jilsmls(qu
r

Calculation of Eg(;y:

In a two electron atom, the average potential agpeed by an electron

varies between

(15,15,) and it

measures the Coulombic repulsion between electrons.

}

Unit 7

HMO Method
NOTE

1% )>
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1 2
-~and-~ thatis it depends on the effective nuclear
f I
charge experienced by tHedlectron in Helium atom. The
best value of Z, the effective nuclear charge will be

determined by the variation principle.

The wave function of 1S — orbital appropriate tis th
effective nuclear charge 5

3
(Z' > e—z'r
Jr

This orbital wave function is an eigen functiontioé
( 1, le

Hamiltonian operatd)FED - i
r

1S=

2
Z
with eigen value(— _)
\ 2)

ie. |[—l|]2 —L\)Z Tz :{_E)? vz -zr
L2 r) Nn U 2) 7

Eis(i), energy of the'! electron in the 1S orbital of helium
atom.

ie. E(i) = (1()|H (i) 1)

= <1S(i)|—iD? —g|13(i)>
2 '

= <1S(I)|— iDz -
2 I

(2

“2na)

r

180) -0 |
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= <1S(i)|— im? -
2 |

%ps ()) - (2- 2)(150) |%|1s )

' 2

z : R
:7 —(2-2) <1S(|)|F |1S(')>

2

Eaig(i) = "_22 -(2-2)

Wby 1

L drSincd& g
z2 e? ——e*r

000 ﬁ I'i\/l_T

:__ZI2 -(2-2) Z_soj'e‘zz"iridrij'TSinédHwa
2 7i g 0 0

2

3
Eai) = '_22 —(2—2‘)%.477. L1

(27)

2

E1g(i) = — - 2-2)z

Ei1) = B2).

Since electron (1) and (2) are equivalent.
(22 N
E (129=2-_-(2-z)z|
(09235 -(-2):|

= 7?47+ 27"

.
5.
E=E, (D)) 9= .2

E=z'2—4z'+5_z'

8
E:z'z—zz
8
o : . _OE _
Minimizing the energy with respect to variable paeter 2 —a =0
VA

Unit 7
HMO Method

NOTE

Self-Instructional Material



Unit 7
HMO Method

NOTE

0(2'2_272'\:0

0z \ 8

z= 2_7: 1.69

16

Substitution of this optimum value of in energy
expression we get,

E =(1.69 ~ 27169
8

=-2.847&u
lau=27.2V

E=-77.48eV

This is the approximate ground state energy ofuteli
atom. Experimental value is -2.904au (-79 eV). Thus
variation principle accounts for 98% of the obsdrve
energy.

The effective nuclear charge experienced by an
electron in Helium atom is 1.69 instead of the tharge
2. The difference in these two values 0.31 repiisdbe
screening of the nucleus by other electron and i8.8alled
the screening constant or shielding constant.

7.4HMO Method

Huckel adopted an approximation method to estimate
energy and wave function of the molecular orbitaihfed

by the combination ofr molecular orbital. The theory
proposes the following approximation.

1. In a conjugated molecule the electron does not
interact withoelectron. The complete wave functian
for the molecule is expressed as
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Y=Yo,¥n
Wherey ,= complete wave function farelectrons
¢ » = complete wave function forelectrons.

The energy E of the molecule is expressed as,

E=E,+E,

2. Each HMO is considered as linear combination of a2tdmic orbital

Yi=amt azxpt...... & pn

Yi= . ap,
Whereyi-i"™ HMO of the rrelectron system
pr =2P, atomic orbital of the'tcarbon
n = Total number of carbon atoms in the molecule

a = Coefficient of 2Rorbital of " carbon atom in thd'iHMO

3. The energy of thé"iHMO i.e. Eis calculated by the formula,
E :I Y widr
! Widr

[

Application of variation principle with ‘n’ numbeaf carbon
atoms gives ‘n’ number of secular equation of twing types.

ai(H11-ESiy) + @ (Hi-ESD) +...... a(HirESin) =0
al(H21-ES1) + & (HorES) +...... an(H2rESn) =0

a(Hn-ES1) + & (HnES2) +....... a(HnESin) =0

The corresponding'horder secular determinant is

Unit 7
HMO Method

NOTE

Self-Instructional Material



| H,-ES; Hy,-ES, - - - Hy, -ES,

Unit 7 H 21~ E$1 H 2" ESzz - - - H on” ESZn
HMO Method . - - - _ - =0

NOTE Hu-ESy Hi-ES, - - - H,-ES,

4. The columbic integrals Hpepresents the energy of the
electron in 2porbital of i carbon atom

ie. Hi=[pH pdr

where pis a wave function of 2P orbital of i” carbon
atom

All such integrals are equal and denoted by symabol
Hnn = (say)

5. The resonance integralsskepresent the energy of
interaction betweerrcarbon atom and"scarbon atom.

i.e. Hrs :J. pr |:| deT

where pis a wave function of 2P orbital of " carbon
atom

psis a wave function of 2frbital of & carbon atom
For non-bonded carbon atomsH O

For bonded carbon atom all such integrals are eanal
denoted by symbg#

Hiz=Hz2s....Has=....=
(say)
6. Integral of type &is equal to one.
ie. S= [p *dr=1
S11=52......S3=. .....=5n =1
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t

7. The overlap integralssare assumed to be zero though
is not actually zero. This assumption simplifiese th

) Unit 7
calculation. HMO Method
S(S: j pr pS dT
NOTE
S12-53=......... =0

Hence the secular determinant for a linear conggypblyene is of the
following form.

a-E B 0 0 0
B a-E B 0 O
0 g a-E [ O
0 0 0 0 0

Dividing each element bgand puttinga -E/ 8= X

Then
x 1 00 - -0
1 x 1 0 - -0
01 x1 - -20
0O 001 - - x

The solution of the secular determinant is wrigsrfollows
= - 2cos (n7/N+1)
a-El g= - 2cos (n77/N+1)
a-E =-2pcos (n71/IN+1)
Energy = a +28cos (wr/N+1) n=1,23,...... N
n = order of energy level (or) order of moleculdrital.

N = Total number of carbon atoms in the molecule.

Thus, energy can be written as
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| En=a+ 2pcos (mr

Unit 7 IN+1)
HMO Method
NOTE 7.5 Application to Butadiene

There are four 2ptomic orbital to be combined and
four T electrons in the molecule. The HMO'’s are of the
form, ¢ = ap1+ ap2+ asps+ aps. Where a, &, &, aare
coefficients. There are four coefficients, so 4x4
determinants.

The secular determinant of the system is

x 1 0 0
0
1 x 1 =0
0 1 x 1
0 01 x

x 1 0 1 10
x|11 x 1-1/0 x 1=0
0 1 0 1 X

X {x(x*1)-1(x)} -1{[1(x*1)-1(0)} = O
X (C-x-x)-10¢-1) = 0
X% X% -x2-x*+1=0
x*-3xX+1=0
Put y=X  y*3y+1=0
y = -(-3k/(-3) - 4@)@) / 2 [-x =
bt +/b? — dac/2a]
=3t/9-4/2
=3t.5/2

= 3+2.236/ 2
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0 y=0.38: (or) y=2.61¢

y=x
x=%[y x==[y
x =+ ,/0.382 X = ++/2.618
x=+0.618; x=-0.618 X=+1.618;x=-1.61
Sincea -E/ =X

E=a-px
0 Ei= a +1.6188
E>= a+0.618p4
Es=a-0.61883
and E&=q0-1.6183
Thus the total energy is, £= 2( a +1.61883) +2(a +0.61883) -4a
=4a +4.4803 -4a
O ,,Bond energy = 4.48
Delocalization energy = @+4.483) - 2x2(a + )
= 4q +4.48(-4a-4 8
= 4.483-4
= 0.4883

Wave functions:

The wave functions corresponding to the energylseligb,, E3
and & may be determined as follows.

The secular determinant for butadiene is
1 00
x 1 0
1 x 1

OOHX

Unit 7
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The secular equations are obtained as follows
axte=0 -(1)
ataeX +a=0 -(2)
xtax +tau=0 - (3)
astax=0 —(4)
For the energy level.E x =-1.618
Putting x = -1.618 in equation (1) we get,
a(-1.618) + a= 0
0 a=1.618 a

Substituting the value okand x in equation 2
a+1.618 a(-1.618) +a=0
a-2.618a+a=0
a=-1a+2.618a
a=1.618a
Hence a= &
Substituting the value ogand x in equation 4, we get
1.618 atau(-1.618) =0
Oa=au
From the condition of normalization,
8.12+822 +a32+a42: 1

Oyi1= ap1t1.618 a 1p+1.618a
Ps+aups

The wave functiory 1is normalized as follows

.[ .[11 12

YAdr=1=(ap+1.61&p +1.618p +ap)idr

[
j p2d7 + (1.61& ) j p,2d7 +(1.618)° j p2d7 + af_[ prdr=1
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0a?[1+2.618+2.618+1] =1
7.2363°=1 Unit 7
HMO Method
a=1/4/7.236
Oa=0.372
& =1.618a
=1.618(0.372)
a=0.602
a=1.618a=1.618(0.372)
as =0.602

NOTE

Thus,
w1=0.372p+ 0.602p+0.602p+0.372p

Similarly we can find fory 2, ¢ 3 andy 4 by using the values x = -
0.618, +0.618 and 1.618 respectively. The four HMGF butadiene are
thus found to be as follows:

¢ 1= 0.372p+ 0.602p+0.602p+0.372p
¢ 2= 0.602p+ 0.372p-0.372 p-0.602p

¢ 3=0.602p-0.372p-0.372p+0.602p

¢ 4=0.372p- 0.602p+0.602p-0.372p

7.6 Check Your Progress

1. Explain the HMO method.
2. Explain the HMO method and apply it to butadiene

7.7 Answers to Check Your Progress Questions

1 Huckel adopted an approximation method to estingatergy and

wave function of the molecular orbital formed by ttombination ofrr
molecular orbital.

Self-Instructional Material



Unit 7
HMO Method

NOTE

| 2 There are four 2patomic orbital to be combined and four
electrons in the molecule. The HMO'’s are of thenfoy =

aip1 + ap2 + agps + aps. Where a, a, &, & are coefficients.
There are four coefficients, so 4x4 determinantsingy the
HIVIL metnoa, we aerive, bona energy = 445

7.8 Summary

The variation method to hydrogen atom gives,

E=1_2=—_1au

2 2
This represents the exact value of energy and exgen function for
hydrogen atom in its ground state. Any other wawecfion chosen
will always lead to an energy greater than the kiveaact energy of
the system.

7.9 Keywords

. HMO : Huckel Molecular Orbital.

. Variation method: For many problems, it is not practical to obta
wave function by the exact solution of a wave eignathat describes the syste
It is still possible to perform many types of cdétions, and one of the mc
useful techniques is that known as tagiation method

7.10 Self-Assessment Questions and Exercises

1. Write down the steps involved in applying vaoatimethod.
2. State and explain variation theorem with proof apgly it tc
hydrogen atom.

7.11 Further readings

Quantum Chemistry, L.N. Levine, Allyn and Bacon,
Boston 1983

Quantum Chemistry, R.K.Prasad, Wiley Eastern, N
Delhi,1992.
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8.0 Introduction

8.1 Objectives

8.2 Symmetry elements and symmetry operations

8.3  Rules for forming a group

8.4  Group multiplication table

8.5  Group classification

8.6  Point groups and systematic assignment of
point groups for molecules

8.7  Check your progress questions

8.8  Answers to check your progress questions

8.9  Summary

8.10 Keywords

8.11 Self-assessment questions and exercises

8.12 Further readings

8.0 Introduction

Group Theory is the mathematical applications ahmetry to an

object to obtain knowledge of its properties. Amajroup describes all the
symmetry operations that can be performed on a culdethat results in a
conformation indistinguishable from the originaloit groups are used in
Group Theory,the mathematical analysis of groupsgdtermine properties
such as a molecule’s molecular orbital. In thigisacnve are going to focus on
the Symmetry elements and symmetry operationss figieforming a group,

group multiplication table, group classificationpift groups and systematig

assignment of point groups for molecules.

8.1

Objectives

After going through this unit, you will be able to:

Understand about the Symmetry elements and symmpénations.
Understand the rules for forming a group, grouptiplidation table.
Explain the concept of point groups and systenasignment of point

groups for molecules.
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8.2 Symmetry  elements and

operations

symmetry

SYMMETRY ELEMENT

A symmetry element is a geometrical entity sucla éise or
a plane or a point about which an operation of tiataor
reflection or inversion is done.

SYMMETRY OPERATION

A symmetry operation is a movement of the molesuleh that

the resulting configuration of the molecule is stdiguishable
from the original. The molecule is taken into aruigglent
configuration or and identical configuration.

The symmetry elements and the corresponding

symmetry operations are listed below:

Symmetry elemen

Symmetry operatior

Proper axis of symmetry
(Cn)

Rotation once or severa

times by an angleb=
(2n/n) about the axis.

Plane of symmetryo

One or more reflections
in the plane

Improper axis of
symmetry (9)

Rotation about the axis

followed by reflection in
a plane perpendicular to
the rotation axis.

Centre of symmetry (i)

Inversion of all atomg

through the centre of

symmetry

Identity element (E)

This operation leaves the
molecule unchanged.

PROPER AXIS OF SYMMETRY (Cn)

This axis of symmetry can be explained by takirg élkample
of triangular planar boron trichloride molecule. Imoron

trichloride molecule an axis of symmetry

is located

perpendicular to the plane containing all the atoifisis is
known as the €axis of symmetry. In general the symbol for
proper axis of symmetry issCwhere n is known as the order of

the axis.

The order of the axis is given by the number cdtions by
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0, to get the identical configuration. n is altermatgiven by
the formula.

n = (21/6)

wheref is the minimum angle of rotation to obtain the igglent
configuration.

(B)

PLANE OF SYMMETRY ( 0)

The plane containing all the atoms is called asemdéar plane.
[PtCls)? ion contains a molecular plane and four more céfie planes.
Water has a reflection plane passing through thgex atom and another

one containing all the atoms.

The reflections plane in water molecule
The reflection plane is of three types:-

)] A plane is referred to as horizontal plang) (f it is
perpendicular to the principal axis.

i) A reflection plane which contains the principalsaid called as
vertical plane ¢v).

iii) A vertical plane which bisects two perpendiculaages is
called a dihedral plane{) e.g. allene.
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IMPROPER AXIS OF SYMMETRY (Sn)

It is the line about which a rotation by a specHitgle
followed by refletion in a plane perpendicular b trotation axis
is performed. E.g.&axis in staggered form of ethane.

:/"
H ! i
L —c H e
w—_ - -
&
Ce i ——
Lt =
“H H
o : c
e Sl - S
1

CENTRE OF SYMMETRY (i)

This is the point such that any line drawn throitgmeets the
same atom at equal distances in opposite directigkb
homonuclear diatomic molecules posses the cenggrometry.

H H

N N

i

Y AN

8.3 Rules for forming a group

The symmetry elements of a molecule
must satisfy certain rules in order that they faangroup. The
rules are

1. The product of any two elements or square of edement
must be an element of that group.
2. In each group, there is one element which commuiisevery
other element and leaves it unchanged. In genbmlidentity
element does so.
3. The associative law of multiplication hold good.
4. Each element has an inverse or reciprocal whielsis element
of that group.

If the element is A and its inverse iS'A

Then, AA=E

For e.g. consider the set of numbers
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{1/4,1/2, 1, 2, 4, 8, 16}
By rule (1)
2x4=8
2°=4
4 =16
By rule (2)
A'B'=B"A"
Ix2=2x1=2
1Ix4=4x1=4
By rule (3)
A (BC) = (AB) C
2(4x8) = (2x4)8
By rule (4)
AA?
Yax2=1
Yax4=1

8.4 Group multiplication table

It consists of rows and columns. Each is represebyea group element. For
multiplication we can use the following method. iGolumn element x Row
element.

For constructing a group, rearrangement theorent beuknown. It
states,

“In each column or a row a particular elementsuocnly one”.
For example,

Consider a group of order 2. This group consistsvofelements only.
Let the elements be E and A. The first step leadké following table.

G2
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According to rearrangement theorem ‘X’ should becly and
cannot be ‘A’.[0the group multiplication table of &

Example -2

E CZ Ov

Ov
C2 E (¢} v' Ov
I
Ov Gv E C
oV Ov C E

The following features of the multiplication taldarry
significance:

1) E combining with any operation X gives X as thailes
since E does “nothing” i.e., EX=XE =X.

2) Coperformed on any object, interchanges both left and
right and front and back.

3) ov interchanges only left and right whiley,
interchanges only front and back.

Thusovoy' =06/’ ovis the same as front-back +left, -right
interchange

i.e. GCov=0\ ov ov =o/E =o/ and similarly G
ov'= Oy

8.5 Group classification

FINITE GROUP

A group that contains definite number of symmetry
elements is called the finite group. For examplatewmolecule
has 4 elements of symmetry and Ammonia molecule éas
elements of symmetry. Therefore they belong tdithiee group.

INFINITE GROUP

A group that contains infinite number of symmetry
elements these are called as infinite group.

For example: linear molecules; kH-H), Br2 (Br-Br), HCI
and CQ can be rotated along the molecular axis to anyesegr
Therefore they have infinite axes of symmetry. Soallecules
belongs to infinite group.

ABELIAN GROUP
Abelian group is a group in which each element cones
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with every other elements.

For eg:- In water molecule, each element commutéh every other
element and therefore water molecule belongs tdiasmbgroup. Such a
situation dos not arise in Niholecule and hence it is non-abelian.

CYCLIC GROUP

A group in which one element generates all theragteaments of the
group is known as cyclic group.

For e.g. the elements of symmetry that are praadi#tO.are E and &
The element €generates the other element E sing&=CE.

SUB GROUP

A sub group is the smaller group of a main grouplnch the
elements of symmetry must satisfy the requiremimtBrming a group.

The order of a subgroup is given by ‘g’. The ordka maingroup is
the integral multiple of the order of the subgroup.

h=gxn
Where ‘n’ is the integer.
In water molecule, there are four subgroups. Thiey a
(E) (E, G) (E,ov) and (Eov)

In general, the identity element in any group ¥ahm one of the subgroup.

8.6 Point groups and systematic assignment of point gups
for molecules

POINT GROUPS

Depending upon the symmetry elements moleculeslassified in to
different groups. Molecular groups are called pajndups. Because the
symmetry elements intersect at a point and thistpddes not move during
symmetry operations. Molecules are classified idifferent point groups
based on certain combinations of symmetry operatiftee system of
notation used for point group is known as schoesfBystem. In this case
symbols like Gy, Dnn, Orand Tq are used. In order to identify the point
group, the following flow chart will be helpful.
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Unit-8:
Assignment
of point
groups

NOTE

Is the mo}ecule linear?

+
Yes

+
Does the molecule
have ?

4

No

Does the molecule have many C. axes of order

greater than 27

+ + + +
Yes No Yes No
Doa Coy + +
The molecule Does the molecule have
belongs to the n C, axes perpendicular
cubic' group to the C, a,xis‘.;
M 1 il t% 4
ABa ABs A;:B1a Yes No
(tetra- (octa- (icosahedral) ¥
hedral) hedral) | The group is
4 1 N dihedral
¥ Ohn I .
+ + +
+a +no, no planes
4 + ¥
D, x D D.
i -
Does the molecule have the
C,. axis?
+ +
Yes No
* +
+ + v Does the molecule have the
+o, +ney  no planes reflection plane alone?
+ + 4
Cux Cay Ch + ¥
Yes No
¥ L
c. Does the molecule have
only the centre of symmetry?
4 = ¥
Yes No
+ . 4
Ci Does it have only the S. axis
of even order greater than 2?
|
4 +
Yes No
S. Does the molecule have
only the identity
element?
Yes
ik
C

8.7 Check Your Progress

1. Distinguish symmetry elements and symmetry opeanatio
2. Explain Centre of symmetry?

3. Define Cyclic group?

4. Define Point group?

Self-Instructional
Material
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8.8 Answers To Check Your Progress Questions Unit-8:

1. _ Assignment of
Symmetry elemen Symmetry operatior point groups
Proper axis of symmetry n) Rotation once or several times by an

angled= (2r/n) about the axis.

Plane of symmetryo One or more reflections in the pla

Improper axis of symmetry (b Rotation about the axis followed by NOTES

reflection in a plane perpendicular [t
the rotation axis.

Centre of symmetry (i) Inversion of all atoms through the
centre of symmetr

Identity element (E) This operation leaves the molecule
unchanged.

2. This is the point such that any line drawn throuigheets the same atom at
equal distances in opposite directions. All homadearc diatomic molecules
posses the centre of symmetry.

3. A group in which one element generates all therothements of the group
is known as cyclic group. e.g. the elements of sgtnynthat are present in
H20; are E and € The element £generates the other element E singé=C
E.

4. Depending upon the symmetry elements moleculesciassified in to
different groups. Molecular groups are called pgnatups.

8.9 Summary

A point group describes all the symmetry operatidingt can be
performed on a molecule that results in a indistisigable from the
original.

* The different types of groups and their definiteme symmerized.

« Symmety elements and their operation such as Prepé of
symmetry (@), Plane of symmetrycs], Improper axis of symmetry
(Sy) and Centre of symmetry (i) are clearly explained.

8.10 Keywords

Point group: point group describes all the symmetry operatibias ¢an be
performed on a molecule that results in a confoignahdistinguishable from
the original.

Group classification: A subset of a group that is closed under the group
operation and in which every element has an invierige subset.

Group multiplication table: Every row contains each element exactly
once and every column contains each element exady

137 _ ,
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8.11 Seltassessment questions and exerci

Unit-8: — . .
ASSi 1. Explain in detail about the rules for formin grouy
gnment . ) ) .
of point 2. Discuss in detail about symmetry group and opematio
3. Dicuss the point group
—roups 4. Explain Group classification
NOTE

8.12 Further readings

3. Chemical Application of Group Theory, F.A.
Cotton, John Wiley and Sons Inc. New York,1971.
4. Group theory and its applications to Chemistry,

K.V. Raman, Tata McGraw-Hill Publishing Company,1990.

Self-Instructional
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Unit- 9 Matrix representation theory Unit -9

Structure Matrix

9.0 Introduction Representation
9.1 Objectives

9.2  Matrix representation theory

9.3  Matrix multiplication

9.4 Inverse of a matrix

9.5 Matrix diagonalization

9.6 matrix representation for symmetry operations
9.7 Check Your Progress

9.8  Answers to check your progress questions
9.9 Summary

9.10 Keywords

9.11 Self-assessment questions and exercises
9.12 Further readings

9.0 Introduction
The symmetry operations in a group may be repredeby a set of
transformation matrices, one for each symmetry eldmg. Each
individual matrix is called arepresentative of the corresponding
symmetry operation, and the complete set of matrisecalled amatrix
representation of the group In this context, we discuss in detail abput

matrix representation theory,matrix multiplicatiomverse of a matrix,
matrixdiagonalization and matrix representationsigmmetry operations

9.1 Objectives
After going through this unit, you will be able to:

. Understand the concept Matrix representation theory
. Explain the Matrix multiplication and Inverse of tna.
. Understand the Matrix diagonalization and Matrpresentation

for symmetry operations.

9.2 Matrix representation theory

During a symmetry operation, a set |of
coordinates of an atom in a molecule is transfornmtd a new set of
coordinates. These two sets are related to ondanuwt the form of a set
of equations. This set of equation can be formdlate the form of g
matrix. Each symmetry operation is represented bgnadrix. Matrix
representation of the symmetry operation is usefulthe study of

structural problems
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Unit - 9.3 Matrix representation for symmetry operations

Matrix The matrix representation for each kind of symmetry
Representation operation can be obtained as follows.

Cn OPERATION
NOTE
Consider the figure shown,
X -
(a)

The position of an atom in a molecule is represkie
the vector OP whose magnitude is ‘r'. Point ‘P’ responds
to the coordinates Xx,y,z. If the molecule is
Rotated in the clockways direction through an artgléne
atom changes its position from the point ‘P’ to gmnt ‘R’.
point ‘R’ has a new set of coordinates namelyz.

Consider the\POQ), it follows from the knowledge of
trigonometry that,
X1=0Q =r Coxx
y1 = PQ = rsim
Consider th\ROS,
Again,
X2=0OS =rcoP =rcos { -0)
y2=RS =rsin3d =rsin ( - 0)
Self-Instructional Z>= zi(since the rotation is carried out about the zJaxis
Material
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Ox2=r cosa cosO + r sina cosO = x1cosO + y1sin@ + 0
Y2=1r sina cosO - r cosa sinB = y;1cosO + x;sinB + 0
=0+0 + z.
Z2=171
cos@=p) = cosa cof * sina sinf3

sin (@) = sina co$ + cosa sinf3

This set of equations can be formulated in the fofm matrix.

| [ cosé?g sing@ 0-‘|_ X1 | ||_ xzﬂ
-sin cosd _
| O] % ( 1Y

(e o 1z]| Iz

Therefore the matrix representation foraRis is given as,

[ cosd sind O]
Cn:|—sin9 cost 0|
{ 0 0 1J

If the rotation is carried out in the anticlocketition, the matrix will be,

[cosd -sind 0]
|rmé’ cosd OJ

1

For e.g. the matrix representation for ga&is is given by

| [ cos180 sin180 qoj 1
C='-sin 180 co0s180 —1 O|
2
| O 0 1J 0 1
141
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Unit -9
Matrix
Representation

3

NOTE | O / '

0 1 |

120 sin120 12
|r—ccs’|?1120 Scl:r(l)3120 j&l §o L3/3 f)ﬂ

For an identity operation, the new set of coordisatill be
the same as that of the original.

cos (908) =sin6
cos (2708) =sinO
sin (9040) = cos@
sin (2700) = cosO

Therefore,
X2=X1+0+0
y2=0+y+0

22=0+0+2

[1 0 0—‘|_X1—| Xo |
0 1 _
| O) % |=] % |
1o 0 1]z] Izl

[0 The matrix representation for the identity openatis

given as,
(1 OO0
E=0 1 0
Lo 0 1]

INVERSION OPERATION
Self-Instructional
Material
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X2=-Xx1+0+0
y2=0—-yp+0

22=0+0-2
[—01 _01 O]FXJ ||_X2|—|
| °|y1\:|¥|
Lo o -1|z] Izl

0 The matrix representation for the identity openati

-1 0 0]

i=lo -1 o0
\Lo 0 —1J

REFLECTION OPERATION

During a reflection operation, the coordinates egponding to the
reflection plane do not change the sign while tfahe other coordinates
change their sign. Therefore the matrices corredipgnto the reflection

operation is given below,

(1 0 O
Oxy=\0 1 0

0 0 -1

-1 0 0
Oyz:| O l O—\
\Lo 0 1]

143
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. [1 0 01
Unit -9 B

Matrix 0,0 -1 O|
Representation 0 0 1|J
NOTE
Sy OPERATION

S, operation involves rotation of the molecule abaut a
axis through an angle followed by reflection in ane
perpendicular to the axi§l the matrix for a Soperation is
obtained by multiplying the matrices correspondimg, and
oxy provided z-axis is taken as the rotational axis.

S’]: CZGXy

|Fc056? sin@ OW(l 0 O] |Fcosﬁ sin@ O“
S="-sinf@ cos OIO 1 O|=|—sin6’ cosfd O|
n |

I o o 1fo o -1] | o 0o -1

S° =G = G'o

9.4 Inverse of matrix
A square matrix B is called the inverse of A if

AB=BA=1

Where | is the unit matrix. Inverse does not exigte matrix
is singular. The inverse of the matrix A can beagied by
using the following rules:

1. Compute the determinant of the matrix A.
2. Interchange the elementsg and a..

3. Change the signs ofzand a:.

4 Divide each element of the matrix thus

formed by the determinant of A.

Self-Instructional A= [gﬂ 312:’
Material 21 22
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The resulting matrix is the inverse of A and is
represented as™A The inverse of the matrix B

_[3 -2

L1

is obtained as follows. The determinant of the mdris equal to 14.
Interchange of the elements 3 and 4 leads to thexma

When the signs of -2 and 1 are changed, the fafigumnatrix results:

[4 2]

-1 s

Each element of this matrix is divided by 14 toadbthe inverse of B.B
thus obtained is given below:

o

9.5 Diagonalisation of a matrix

The process of reducing a matrix to the diagondtime referred to
as diagonalisatoin. Let A be the square matrix ofeo n. P is the
similarity transformation matrix which reduces Atte diagonal matrix D
according to the equation.

pt AP =D
145
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Let us consider the matrix A

[-7 6
A7 18 14}

The similarity transformation matrix P

And its inverse P

can be used to reduce A to the diagonal matrixraatg to
the equation

piap=! 2 -1 [-7 6] [2 1]

-3 2| |18 14| |3 2|

15 s
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9.6 Matrix representation for symmetry operations

Using carthesian coordinates (X,y,z) or sgusition vector, we
are able to define an initial position of a poinaa atom.

[y
¥

lZ]

The initial vector is submitted to a symmetry operaand thereby
transformed into some resulting vector definedhigydoordinates
X', y'and z'. In an algebraic context, this transfation is expressed
a matrix which processes the initial position vectie write

final vector = Matrix * initial vector.
The most primitive symmetry operation is the idgnaéind yields a final

vector identical to the initial vector. It is thi@ity matrix or identity
matrix which leaves all coordiates unaffected.

1 o0 ol
E=0 10
0 0 1]

If we want to perform aeflection on the xy-plane (analogous to a
horizontal plane), coordinate z changes the sign.

11 0 0|
. = \0 1 0
00 -1
| x| 1 o0 ol
¥ | = ‘ﬂ 1 0|
| — 10 0 =1]lz]
147
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The matrices which are applied for performing eition

Unit -9 on the yz-plane and xz-plane are the matrigesd
Matrix oy respectively.
Representation
[ D ('_]II 1 0 0
CTI=‘0 1 0 G-'.'z\ﬂ =1 ﬂ‘
NOTE 0 00 g 0 0

Theinversioni relates the coordinates (x,y,z) with (-x,-y,-z)
and is connected with the following matrix:

=t o |
i = \ 0 -1 0 ‘
0o 0 -1

Obviously, a twofold application of the inversioratrix
yields the coordinates of the initial point (x,yvehich is
reflected byE = i*i.

I'—1 0o 0 "I—l o o " [1 0 t'J"
i =10 =1 0 ‘ ) R J = (0 1 I:JJ = E
0 0 -1/lo 0 - 0

The matrix for a rotation about axis z by an adritrangle®
is derived easily if we imagine two two-dimensional
coordinate planes with identical origin but an dagu
difference of® between the axes. In our context of
symmetry, we just need to deal with the discretaesof®
= 2x/n for the angle of rotation.

| cos2mln  sn2min 0l
C,=|—-sin2mwin cos2mwin 0O
0 0 1]

The matrices for the symmetry operati@$z), G(z), CGi(z),
Cs(z) andCs(z) are obtained easily. The matrices @l as
symmetry operation are calculated by an n-fold ipligation
of matrix Cn. The symmetry operatiof, around axis x
(x—X,y—-y, z—-z) and around axis y are-(¢X, y—Yy, z—-
2):

Self-Instructional
Material
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1 0 0 "
) e ‘D -1 0
0o 0 -1
1 0 ol
G ) e ‘ 01 0 ‘
0 0 —1

As we know rotatory-reflection to be a combinatainotation and
reflection, a matrix representation for this operais easily to be
derived.For instance, to obtain the matrix for tatga reflection $(z) we
multiply the matrices for the fundamental operagi&sigmaand G.

(1 0 0|lcos2mln sin2mln 0O | cos2min sin2min O |
Szl =eC, =10 1 0| -sin2win cos2min U‘ = |—sin2w/n cos2min 0O
oo =1/| o o 1/ | o T

9.7 Check Your Progress

1.What is matrix representation?
2.Givethe rules of Inverse of matrix?
3.what is the equation o, ©PERATION

4.what are the types of symmetry operations in maépxesentation?

9.8 Answers to check your progress questions

1. The symmetry operations in a group may be repredehy a set of
transformation matrices, one for each symmetry eldmg. Each
individual matrix is called a representative of tmeresponding symmetry
operation, and the complete set of matrices isedalh matrix
representationof the group.

2.
» Compute the determinant of the matrix A.
« Interchange the elements and a..
« Change the signs ofzand a.

« Divide each element of the matrix thus formed by determinant
of A.
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S’]: CZGXy

|Fcos9 sin@ OW(l 0 O] |FcosH sin@ O“
S='-sinf cos® 0'0 1 O|=|—sin6’ cosd O

| O o 1Jo o -1] I o 0 -1
S° =G’ =G0

4.,

> Cnoperation

> Snoperation

> Inverse operation

> Reverse operation

9.9 Summary

. A matrix representation theory describes all the

symmetry operations that can be performed on a
mathematical experision

. The process of reducing a matrix to the
diagonal matrix is referred to as diagonalisatoin.
. Matrix representation of the symmetry

operation is useful in the study of structural peotfs

9.10Keywords

Matrix representation-A set matrix of symmetry Ggiems.
Inverse of matrix -AB=BA =1

Operations €, S n,Inverse Reverseoperation

9.11 Self-assessment questions and exercises

1. Explain in detail abou¥atrix representation theory and
matrix multiplication

2. Give a brief review Inverse of a matrix

3. Explainmatrix representation for symmetry operations
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9.12 Further readings

1. Chemical Application of Group Theory, F.A.
Cotton, John Wiley and Sons Inc. New York,1971.
2. Group theory and its applications to

Chemistry, K.V. Raman, Tata McGraw-Hill Publishing
Company,1990.
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UNIT- 10 Character table

Structure
10.0 Introduction
10.1  Objectives

10.2 Reducible and irreducible representations
10.3 Character table of&£and Gv point groups.
104 The great orthogonality theorem and character

10.5 Direct product representation

10.6  Check Your Progress

10.7  Answers to check your progress questions
10.8 Summary

10.9 Keywords

10.10 Self-assessment questions and exercises
10.11 Further readings

10.0Introduction

Representationis a set of matrices which represent the operations
of a point group. It can be classified in to twpeg, which are
reducible representations and irreducible represens A
character table is a 2 dimensional chart associaiieda point

group that contains the irreducible representatafreach point
group along with their corresponding matrix chagextlIt also
contains the Mulliken symbols used to describedihgensions of
the irreducible representations, and the functfonsymmetry
symbols for the Cartesian coordinates as well &gioms about the
Cartesian coordinates. In this context, we discusietail about
reducible and irreducible representations,Charaatde of C2v

and C3v point groupthe great orthogonality theorem and character
anddirect product representation.

10.1 Objectives

After going through this unit, you will be able to:

. Explain about the reducible and irreducible repnéestéons
. Understand about the character table of C2v andpoBu
groups

. Understand the concept iie great orthogonality theorem
and character

. Learn about thdirect product representation.
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10.2Reducible and irreducible representations

REDUCIBLE REPRESENTATION

Reducible representation and its reduction can beéearstood by
carrying out a similarity transformation.

Let A,B,C,D and P be the similarity transformatiomatrix in this
group.By similarity transformation the matrices ACBD and P are change
into A’,B',C',D’ and P as

P*AP=A
P'BP =B
P'CP=C
P'DP =D
P'PP=P=P

If the resulting matrices can be blocked into serathatrices, then the

representatio is called a reducible representation. For e!gcah be blocked

into a’, &', &', &,......... &', as sub-matrices as
2 0 0 0 0 O
00 az 0 0 0 O
Al= 0 o a 0 0 0
0 0 0 a 0 O
O 0 0 O a; 0
o 0 0 0 0 a

A reducible representation result when the varisusimetry operations ar
performed on all the sigma-bonds of a moleculeefgr In Bk molecule (Bh

point group) the 12 symmetry operations of thisugraare divided into 6
classes as

11
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(E) (GLGH, (BGYH,(30v),(SH,S°) and
(on).

The three sigma-bonds in B&re considered as vectors
ri, rand g. By a symmetry operation R, the vectors mand &
ri, . and r3 are changed int@ rr2’ and &' according to matrix
equation.

Lo

't
2 1= Ryr2 =@
| i

Where [R] is the matrix for the operation R. The&tipns
relating &', ' and r3and &, randgare

1 1 2 3
r*=0r+1r +Or
2 1 2 3
r*=0r+0r +1r
3 1 2 3

In matrix form the above equation becomes

L1 0 0 [r]
r

m=lo 1 0]><|rl
> | 2|
1

I3 }I_O 0 1“ l_l‘3J

From equations (a) and (b) we get

100
010

10 0 1]

)

As the matrix for identity operation.

For Gs' operation the resulting vectors yr.’ and ' are related to
r1, rand g by the equation.
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r*=0r+1r +0r
1 1 2 3

=m+m+u

These equations can be represented in the matnxde

|V° Rk
00 1|>< r '—(c)
1 0 o

From (a) and (c), we get,

010
=0 0 1

|
1 0 ol

Similarly we get reducible representation for

1 1
ov oh S G

1 0 0{1 000 101 OO
0 01/ 1 0j0 0 1|0 O 1

o0 1 0Jo o 1|1 0 o]0 1 ol

The characters of the matrices can be found bygusie rule
“The character of the matrix for a symmetry opematis equal to the
number of unshifted vectors by the operation”.

The number of vectors unshifted by the identityrapen is three.
{1 00
010

‘Lo 0 1|
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Unit-10 The character for this matrix is also 3.

Character table ) ) .
By using the rule the characters for the differaatrices

of operations of Bkare obtained.

NOTE

Symmetry | E | C3 [C2 | on | ov | S3
operations
Character off 3 0 1 3 1 0
the matrix

IRREDUCIBLE REPRESENTATION

If it is not possible to find a similarity transfoation
matrix which will reduce the matrices of represéntal” then the
representation is said to be irreducible. All omaehsional
representations are always irreducible.

Example:

Considering the matrices of transformation for Zheoordinate
of a hydrogen atom in hydrogen molecule, which lteby the
symmetry operations ofJdh group. The operations of-B group
are E, G, ov, &, on, Ssand i. From the figure the Z-coordinate is
unaffected by E, €andoy operations.

Self-Instructional The C, axis, vertical plane and horizontal plane innkblecule
Material
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The equations and matrices for the transformatféfr@ordinate of
hydrogen atom by these operations are

EZ=1Z

E matrix = [1]
C..Z =1ZC..
matrix = [1]
ov.Z=1Z

ov.matrix = [1]

All the other operations of this group change tberdinate Z of
hydrogen atom into —Z, we get

C,.z=-1z

S.,.z=-1z

O,.z=-1z
l.z=-1z

C> matrix =[-1]
S, matrix = [-1]
O matrix = [-1]

I matrix = [+1]

The matrix representation thus obtained for theardinate of the

hydrogen atom in the hydrogen molecule is giveowel

E C oo C So on
r o [a] 1] [1] [-2] [-1]([-1] [-1]
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This representation is irreducible since it is one-
dimensional.

Reducible representations and irreducible reprasient
play an important role in obtaining solutions toolpems of
hybridization, molecular vibration, delocalizati@mergies ofil
electron system and so on. In all this applicatities first step
involves point group determination and formation tife
reducible representations of the group. Every pagnbup
consists of a certain number of irreducible repnesens.

The characters of matrices in the different irreolec
representations of a point group can be listedtaioge known as
character table. The character table for a group ba
constructed with the knowledge of properties ofducible
representation. The properties of irreducible repnéation can
be obtained from the great orthogonality theorem.

PROPERTIES OF IRREDUCIBLE REPRESENTATIONS

A knowledge of the properties of irreducible regr@stions is
essential to construct the character table of atgwoup.

Let us consider a point group consisting of h symnyne
operations. These operations are divided into kKssda. The
irreducible representations are denotedl’'gsl ... Ik Iy,
lo........ Ik are dimensions of these representations. The
orthogonalilty theorem is used to obtain the follogvrules for

the irreducible representations.

1. The number of irreducible representations in a grisu
equal to the number of classes in the group.
2. The sum of the squares of the dimensions of the

irreducible representations of a group is equah&order of the
group.

K
Yl&Eh

i=1
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3.

5.

|2+|2+|2 ....... =h
1 2 3

In a matrix of order | there are square elements #ach
irreducible representatiorli will provide | ? = h
dimensional vector. The basic theorem requires gbt of
|12 + |22 + |32
Since there can be more than h dimensional, h gotteal
vectors the sum ofd+ b2+ 1% ......... may not exceed
h.

The sum of the squares of the characters of igeopieration in
the irreduzcible representation is equal to the modehe group h.
k

> (%(E)) =h

i=1

;Lvi(R)]z =h

The vectors whose components are the charactémodfifferent
irreducible representation are orthogonal.

2 X (RX;(R)=0 ; Where ¥]

In a given representation the characters of alrioes belonging
to operation in the same class are identical.

Symbols used for representing irreducible represemtion:

1

2.

Bethe’s method is used to label irreducible repreg®n such as
I'1,I2, 1.

Mullikan’s method is based on symmetry of irredieib
representation.

Symbol A or B represents one dimensional repretientakE
represents two dimensional representationslargpresents three
dimensional representation.

If '= +1 with respect to principle axis, the symbolsAused. If"

= -1 the symbol B is used. If there are severabucible
representation subscript 1, 2, 3 etc are used.

Example:

A1, Az, Az
B1, B2, B3
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If there is only one representation the subscniygt o
iS not necessary.

Unit-10
Character table 5 If the operation is inversion anél = +1 the

subscript g is used (g=gerade). If the operatiomusrsion
andI’ = -1 the subscript v is used (ungerade).
6. If I' =1 for all the symmetric operation of a point gpo

NOTE A1 or Ag is used which is called totally symmetric
irreducible representation.
7. Single prime denotes that the irreducible repredemt
is symmetric with respect te.
8. Double prime denotes, that the irreducible reprediem

IS antisymmetric with respect ten.

10.3 Character table of C2v and C3v point groups
CHARACTER TABLE

The characters of matrices in the different irrellgc
representations of a point group can be listed tabée known as
character table.

CONSTRUCTION OF CHARACTER TABLE FOR C 2V
POINT GROUP

CuV point group consists of 4 elements such as £ ¢ and
owz, €ach is in a separate class. Hence, as per rule

(1) i.e. the number of irreducible representatiofisa group is
equal to the number of classes of the group.

CVv E G Ov(xz) Ov(yz)

| 1

I

I's

T4

Self-Instructional
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There are 4 irreducible representations of thisigdout it is also requireg
as per rule.

(2) “The sum of the squares of the dimensions & theducible
representation of a group is equal to the ordghefgroup h”. Thus we
are looking for a set of 4 ‘+ ve’, integersy, b, Izand k which satisfy
the relation, £+ | 3+ | %+ 122 = h. clearly the only solution isd |= I3 =
4 =1. Thus the group &/ have 4 one dimensional irreducib
representations.

On the basis of the vector properties of the regmadions and the rule

derived above, one suitable vector in four spacehvhas a component

of one corresponding ¢, will obviously be 1,1,1,1 for

;WR)]Z =h

P+ +1°+1° =4

e

U7
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CV | E C2 ovxz)Oovyz)
I' 1
I 1
I's 1
I's 1

Thus satisfying rule

(3) i.e. the sum of the squares of their characteasin
irreducible representation equals h.

CVvV

E & Ov(xz) Ov(yz)

I':
I
I's

I's

Now all other representations will have to be stcht
Y[Xi(R)]* =h=4 which can be true only if eachi(R)= =1.
Moreover in order for each of the other represématto be

1 1 1 1

1

orthogonal td"1. According to the rule

(4) i.e. the vectors whose components are the chasamfténo

different irreducible representation are orthogonal

i.e.2 Xi(R) Xi (R)=0 when4#.
R

There will have to be 2 “+1’'S” and 2"-1'S".
(1) M)+ Q) D+ () (1) +(1) (1) =0
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Therefore we can write the other irreducible repnéstion as follows.

CV |E C2 ovxz ovyz)
I 1 1 1 1
T2 1 -1 -1 1
I's 1 -1 1 -1
I's 1 1 -1 -1

CONSTRUCTION OF CHARACTER TABLE FOR C 3V POINT GROUP

CsV point group consists of 6 symmetry elements. &, G, ov, ov'

andov". It can be listed by classes as Es,28v. Rule (1) is the number of

irreducible representation = number of classes.

CV | E 2C3 3ov

I
I
I's

We therefore known that there are 3 irreducibleesgntations, by rule (1), i
we denote the dimensions hy L and kwe have £+ | 3+ |2 = h= (6). The
only values of the Which will satisfy this requirement are 1,1and 2.

==

CV |E 2C3 3ov

I'1 1
I 1
I's

Thus as by rule (2), the sum of the squares oflitmensions of the irreducible
representation of a group is equal to h.
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| 1°+12+22=1+1+4=6

Unit-10 Always in any group there will be a one dimensional
Character table  representation whose character is equal to +ve ©hetefore
one dimensional irreducible representation s @oint group is.

NOTE
Cs3V E 2G 3ov
I'd 1 1 1
I'qd 1
Iy 2

Thus by rule (3)

The sum of the squares of the characters of igeopieration in
the irreducible representation is equal to the roodiéhe group h.

S[Xi(R)]? =h = -1(1F + 2(1Y + 3(1f = 6

As per rule (4), the vectors whose componentsteeharacters
of two different irreducible representations ar¢hogonal.

We now look for a % vector in space whose components are
equal to + or -1lwhich is orthogonal ia . The components of
such a vector must consists of 3'+1'S’ and 3’-1'Since X(E)
must always be ‘+ve’ and since all elements in shene class
must have representations with the same charatiter,only
possibility here is

Self-Instructional
Material
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CV| E 2CG 3ov

Unit-10
Character table
I 1 1 1
I 1 1 -1

I's 2

NOTES

Now our 3% representation will be of two dimension i.e(K) = 2. In
order to find out the values ofsfCs) and X(cv), we make use of orthogonalit
relationship.

Z

2. X(R)Xs(R) =0
2XRX(R) = (DD)R)+ DUC:) + (Do) =0
=2+ 2x5C,+ 3x30y = 0
2 X(RX(R) = (HWR)+ ADUC;) + (1)) = 0
=2+2)3C;~ 3)30y =0
2X:Cs + 3% =2 - ()

2X:Cs ~ 3 =2 - (2)
4x:C+ =4

xc="2%=1
33 _g»

Substitute ysC,= -1 in equation (1)
2(-1) +3 yz0, =-2
_2+3X3UV:_2

3 x30,= -2+2
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3)(30'\,:0

/\/30'\,:0

Thus the complete set of characters of the irrdtkici
representation is

GV, E 2C; 3ov

rija1 1 1
2|1 1 -1
Iz 2 -1 0

10.4 The great orthogonality theorem and character

This theorem is concerned with the elements of ioesr
constituting the irreducible representation of ampgroup. Let us
consider two irreducible representations i and @ gfoint group.
Let i and | be the dimensions of these representations, heis th
order of the point group. R denotes a particulamragtry
operation in the groupI(( R))mnis an element in the fhrow
and A" column of a matrix in the"iirreducible representation.
The complex conjugate of the element in thd mow and "
column of a matrix in thé'jirreducible representation is denoted

by (Ti( R)) m -
The elementsI{ ( R)mnand {j( R))w: are related to h; &nd |
by the orthogonality theorem as follows.

Z(TI(R))mn(TJ(R))Dng (h /\/m)audmmnc‘n

Jij, Omm, Onn’ denote the kronecker delta symbols. The kronecker
delta symbobj has the meaning; = O for & andd; = 1 for i =j.
This theorem covers three cases.

1) If (I ( R)mnand (j( R))mnrepresent two real elements
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in the ni" row and f' column of the matrix for the operation R ih
the representations i and j, then

W\Il,)é, = O3 (T (R T, (R = (h/Ji1)g=0- (a)

The equation (a) can be applied to the irreducigbeesentation of a
group

containing the operations E and A. The matrix far dperations E and
A in the two representations are given below:

e 2] afh A

FZl EZZJ 21 AZZJ

'E, E,] A AT
E=| . | As A,IW |
o Bl B A

Equation (a) is applied to these representations.

Equation EiEx + A11Ax = 0 is obtained as a result.

2) If (Ti ( R))mnis the element in the frrow and f' column of a matrix for
operation R in the" representation and’j( R))mnis the element in the

Unit-10
Character table

NOTES

m'™ row and n”" column of a matrix for operation R in the sarme

representation, then

ZR‘,(Ti(R))mn(Tj(R))m‘n‘ =(h/)3,,4,, =0

If (T'i ( R))mnis the element in the frrow and ' column of a matrix for
operation

R in the " irreducible representation, then

;(T' (R))mn)2 = h/ll
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| 10.5Direct product representation

Unit-10 Suppose that R is an operation in the symmetry group of a
Character table molecule and X1, X2, X3 ....... Xm and Y1, Y2 ....Yn .are the two
set of functions which are bases for representations of the
group.
NOTE N
RX = leij X
1=
RY = 2 i

Self-Instructional
Material

It is also true that

m n
RXYk = szinlkx i

i=11=1

=22 Zia XY,
i

Thus the set of functions XYk, called the direct product of
Xi and Yk also forms a basis for a representation of the
group. The zi,ik are the elements of a matrix of order (mn) x
(mn).

We now have a very important theorem about the
characters of the L matrices for the various operations in the

group.

“The characters of the representations of a direct product
are equal to the products of the characters of the
representations based on the individual sets of functions”.

The above theorem can be explained by taking the
example C3V  point group. The direct product
representations of the irreducible representations of a
group can be obtained using the character table for the
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group.

CV |[E 2G;s

3ov

A: 1 1 1

Az 1 1 -1
As 2 -1 0

The direct product representation AiA; is given by

E 2C3 3ov
1x1 1x1  1x(-1)
AlA 1 1 -1

Similarly, the direct product representations A,E,A>E and E? are obtained
as

The product representations A1, Az, A,E and A;E are irreducible
representations. The direct product representation E* is reducible.

The representation of a direct product, s, will contain the totally
symmetric representation only if the

irreducible I'a= irreducible I's
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Unit-10 Let Ta=Ts=A2in C3v group, then we get
Character table

Me=AA2= A1—>(a)

Thus in equation (a), the product representation lNag is
NOTE totally symmetric.

10.6 Check Your Progress
1. What is meant byepresentation?
2. Define character table.

3. What is the concern of great orthogonality theorem?
4. How much elements represent isMJoint group?

10.7 Answers To Check Your Progress Questions

1 Representation is a set of matrices which represbat
operations of a point group. It can be classifieda two types,
which are reducible representations and irreducible
representations.

2. A character table is a 2 dimensional chart assediatith a
point group that contains the irreducible represgoms of each
point group along with their corresponding matrharacters. It
also contains the Mulliken symbols used to describe
dimensions of the irreducible representations, #red functions
for symmetry symbols for the Cartesian coordinasswell as
rotations about the Cartesian coordinates.

3. This theorem is concerned with the elements of ioeesr
constituting the irreducible representation of aapgroup.

4, CoV point group consists of 4 elements such as £ o6, and
owz, €ach is in a separate class.

10.8 Summary

 In this unit describes the character table for augrcan be
constructed with the properties of irreducible esgntation. It can
be found from the great orthogonality theorem.

* This unit is concerned with the elements of masricenstituting
the irreducible representation of a point grougalt expressed in

Self-Instructional
Material
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the best way for our understanding.

10.9 Keywords

* Types of representation - reducible representations andiuoible
representations.

e Character table - It is a 2 dimensional chart assed with a point
group that contains the irreducible representatmingach point group
along with their corresponding matrix characters.

o CyV point group - It consists of 4 elements such a€f-ovx; andovy,
each is in a separate class.

10.10Self-Assessment Questions and Exercises

1. Give a brief review about reducible and irreduciigpresentations.

2. Give a brief review about Character table of C2¢ @3v point  groups.
3. Explain abouthe great orthogonality theorem

4. Explaindirect product representation.

10.11Further Readings

1. Chemical Application of Group Theory, F.A. Cotton, John Wiley
and Sons Inc. New York,1971.

2. Group theory and its applications to Chemistry, K.V. Raman,
Tata McGraw-Hill Publishing Company,1990.

3. Irreversible Thermodynamics, J. Rajaram and J.C. Kuriacose, Lal
Nagin Chand, New Delhi, 1989.
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UNIT -11 Symmetry oriented spectral
methods

Structure

11.0 Introduction

11.1 Objectives

11.2 Application of group theory to IR and Raman spectra
11.3 Application of group theory to electronic spectfCHO and
C2Ha4)

11.4 Check your progress
11.5 Answers to check your progress
11.6  Summary

11.7 Key words
11.8 Self Assessment and exercise
11.9 Further Reading

11.0 Introduction

Group theory is an important component for undeditegy the

fundamentals of vibrational spectroscopy. The mdbacor solid

state symmetry of a material in conjunction witlbugy theory form
the basis of the selection rules for infrared apison and Raman
scattering. In this unit we learn about #eplication of group theory
to IR and Raman spectra 20 and NH molecules andpplication of

group theory to electronic spectra (HCHO an#i{

111 Objectives

After going through this unit, you will be able to;

To know theApplication of group theory to IR and Raman speetra
H20 and NH molecules

Understand th@pplication of group theory to electronic spectra
(HCHO and GH4)

11.2  Application of group theory to IR and Raman
spectra - H20 and NH3 molecules

It is not necessary for a molecule to have a peemtaelectric
dipolemoment for IR absorption. But during the apsion, there
must be a change in the dipolemoment of the matediilis change
in the dipole moment can be predicted in termsyafiraetry using
group theory. For this purpose direct product repnéation of the
functions involved in the transition moment intdgraust be
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determined. If the value of the integral is nonezehe transition is

allowed and if it is equal to zero, it is forbidden ]
Unit -11

The transition moment integral is given by Symmetry oriented
spectral methods

P=|¢gP'¢gd
[P g NOTES

®2and® 'are the wavefunctions of the ground aféxcited state of the
vibrational level.

P’ is the electrical dipolemoment operator.

Since dipolemoment is a vector quantity and als®tiie product of charge
and distance between the charges, it can be weaggen

P = R( + Py + Pz
P, = e[ ¢fxgdr
P VI P=e Fygdr
N VR P =€ ¢Fz¢pdr
where, ‘e’ is the charge and x,y and z are theadgs#s in the respective

directions.

The value of the above integrals in general canlidained by considering
the symmetries, of the functions involved in theéegral. Taking P as an
example, the direct product representationdgf, X and ®/ must be totally
symmetric in order thaty2-0.

Since ®\9 is always totally symmetricp,’ must have the same symmetry
that of x. In general the symmetry correspondingxoited mode of vibration
(@) must match with the symmetry of any one of thet&an coordinates x|y
and z for a molecule to be IR active. The abovecephcan be applied in the
case of HO and NH molecules.

WATER MOLECULE

There are three vibrational modes in the water oubde Two of them have
A1 symmetry and one has; Bymmetry. Using group theory, it is possible to
predict which of them are IR active.
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Ai1mode:

P«: Direct product off’ g I'x I'i = A1B1A1 = B1 OP«x= 0
Py: Direct product oflgI'y I'i = A1BoA1= B2 0Py =0
P.: Direct product ol gI':I'' = A1A1A1= A1 0P, #0

Thus A mode in water is IR active sinceA0

B2mode:

P«: Direct product ol gI'x I'i = A1B1B2 = A1A2 = A2 OPx =0
Py: Direct product of 4I'yI['i= A1B2B>=A1A1 =A1  0OPR#0
P.: Direct productof'g I'; I'i= A1A1B2 =B P, =0
Therefore Bmode is also IR active sincgA®

AMMONIA MOLECULE

Ammonia molecule has four modes of vibrations, offthem
have A symmetry and the other two have E symmetry.

A1mode:

In the case of Nk the coordinates X and Y together
transforms into E representations.

P«Py : Direct product of gI'xy['i= AtEA1=EOPPy=0
P, Direct product of gI';I'i= AtA1A1= A1 OP# O
Since B£ 0, Aimode is IR active.

E mode:

PP, : Direct product of gI'xyI'i= AJEE = E (4 1 0)

(4 1 0) corresponds to the characters of the rétrici
representations. This can be split into variouseducible
representations using standard reduction formulah &n attempt
shows that E= A; + Az + E.

Since A forms a part of the,fy must be totally symmetric.

OPP 0
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P, :Direct product of 4I';T'i= A1A1E= E

UpP=0

Since we found thatPy # 0, E mode is also IR active.

It is therefore observed that all the four modebldg molecule are IR
active and all the three modes afdHmolecule are IR active.

APPLICATIONS OF GROUP THEORY TO VIBRATIONAL RAMAN
SPECTRA

A charge in the dipolemoment causes the molecube ti&r-active. The
change in the induced dipolemoment causes the mlelex be Raman active.

The induced dipolemoment is defined as
ui=akE

where,a = polarisibility, E = Electric field strength

Since a change in the induced dipolemoment willltes the change in the
polarisibility, a molecule shows Raman spectrathiére is a change in the
polarisibility due to the absorption of radiatidn.order to apply group theory {o
Raman spectra, the value of the transition monrgagral has to be calculated.

The integral is given as,

) = Jata o

whereo” = polarisibility operator

1%

The polarisibility operator is a measure of thedratic functions of thg

Unit -11
Symmetry oriented
spectral methods

NOTES

cartesian coordinatesxy?, Z, xy,yz,zx). For a molecule to be Raman actjve,
the normal vibration should have the same irredaapresentation as any gne

of the quadratic functions of the Cartesian coat#nin other words, the dirgct

product representation of any one of the followshguld be totally symmetric.
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IER VAP Ixel?
I'iI'xz1%2 I' ry2 I
Iy, T2 I't I'z2I%2

[[1 is always A]

This can be verified by considering water and ammarlecule.

WATER MOLECULE

There are three vibrational modes for water mokctUheir
representations are:

Tvib = 2A1 + By

A1mode

In order to find out the vibrational mode due tQ"& Raman
active or not, the direct product representati@ngte following
are determined.

INIxyI2= AlA2A1 = A2 't T2l
I'1 Txz I'2= A1B1A1=B: IMyelo=A1A1A1= AL
I'n T'yz I'2= A1B2A1= B2 I'I'z20%

It is noted that, among the 6 representationsethre totally
symmetric. Therefore, Anode is Raman active.
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B2mode

In a similar way the direct product representationslving ‘B>’ mode are
determined as follows:

1 Iy Il2 = AiA2B2=B: Mhal:
I'1 Ty, 2= A1B2Bo= As I'1Ty2I2= A1A1B2= By
I'I'x:I'2= A1B1B> = A2 I'I'z2In

It is observed that only one among the six leadetadly symmetric
representation. Therefore Biode is also Raman active.

AMMONIA MOLECULE

There are four vibrational modes in ammonia molkecut terms of grou
theory, their representations have been known t@Aet 2E; Group theory i
applied to verify whether theses modes are activeob

A1mode

The direct product representation corresponding\td mode is determine
in the case of the following,

[iel>
F]_nyrz Flryzrz
I''yI'o =A1EA1=E
'y T2 =AtEAI=E INlzl2=A1A1A1=A

Among these, only one is totally symmetric and ehisrno way of finding
out the representation for three of them (X&)

E mode

The direct product representation correspondiri§’tmode is determined i
the case of the following.

I'n TwI2}=AEE = E ' T2l=AlAE=E

—

I'1 Fyz FZ}
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The result shows that one representation is nallyot
symmetric and the other two gives a reducible eatation (E=
4 1 0). This reducible representation can be sytitnumber of
representations and among them one is totally synone
Therefore ‘E’ mode is called Raman active.

In the case of water and ammonia molecule, theespanding
vibrational modes are both IR and Raman active.iBtlie case
of centro symmetric molecules (molecules havingreeof
symmetry) like CQ, acetylene, b, if the vibrational modes are
Raman active then they will be IR inactive and weesa. This
statement is known as mutual exclusion group.

6.2 Application of group theory to
electronic spectra (HCHO and C2H4)

UV, Visible or electronic spectroscopy is mainly
applicable to organic molecules. In such caseassifians occurs
between electronic energy levels. In the case okeoutes, the
electronic energy levels, correspond to moleculdital energy
levels. The various molecular orbitals aseand = (bonding
molecular orbitals)s” andx (antibonding molecular orbitals), n
(non-bonding). The energy level diagram for thesitals are
shown in the figure,

ENERGY

Group theory can be applied to electronic spectipgby
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=

considering HCHO (formaldehyde) molecule as an @far
Before we apply this theory, the molecular orb@aérgy diagran
for the carbonyl group -C=0 of formaldehyde sholoddtaken i

to consideration.

-

The diagram is shown in the figure.

iC atom) AO (C=0)MO (Oatem )
i o
p—=—_
. x-x*| [ n-n”
i _:‘)‘tP
]
n J' aa
R aa
SDE
.
Too bonds =oAL el n Al .. N
ith Hydrogen atoms o
o pR ¥

The possible transition arem-andn- .

12}

By applying group theory, it is possible to findtavhich type of transition i
allowed or not. For the electronic transitions te &llowed, the following

integrals must take non-zero value.
_[qagxqqdr
[a,yqdr

_[%zqqdr

where,dgand®; are the wave functions for the ground state andexkstates
respectively.

For the integral to take non-zero value, the dipgotiuct representation of
dgand o
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must have the same symmetry as that of any orfeedCartesian
coordinates namely x, y, z.

n-zt" transition:

The arrangement of electrons in the ground andtexkatate
during this type of transition is shown below.

@ = (1) (")
@=(r°)(n)(71)

An electron in a molecular orbital has a particuteeducible
representation. If the two electrons remain inshme orbital, the
product of these representation is always totafynraetric.
Therefore it will corresponds to ‘Arepresentation. In such a case,
the ground state representation is given as

Tg=A1A1= AL

In the excited state wave function, we find thagréhis one
electron each in the non-bonding amdantibonding orbitals. In
order to find out the representations correspontbnipe electrons
in n andx orbitals, the shapes of these orbitals should be
considered.

The figure shows the shapesmft and n orbitals.

Formaldehyde molecule belong, to,\C point group. The
various operations present in this group are E,d and oy,.
These operations should be performednpm” and n orbitals in
order to find out the characters correspondingacheoperation.
Such an attempt leads to the following table. Bst ¢tolumn of the

180



corresponding to the components of the magnetiolelipoment operator a

table gives the Mulliken symbol for each orbital.

E Cz Oxz Oyz Mulliken
symbo
N 1 -1 -1 1 B2
T 1 -1 1 -1 B1
yis 1 -1 1 -1 B1
Based on this table, the representation for théexkstate is given as

O The direct product representation for the groumdl excited state is #A>

Ao.

But this representation ghAdoes not correspond to the representation of
one of the Cartesian coordinates. This shows th#taintegrals take the vall
equal to zero, and hencerntransition is not electronically allowed.

But n4t

given below,

Ti= A1B2B1= A2

has been found to be magnetically allowed. Theegais

[@u(x)@dr
[@uu(y)pdr

[au@adr

The representation for they) , wy), 1z are R,Ryand Rwhich
corresponds to B By and A respectively. Since the direct prod
representation of®g and @ is Ax as seen earlier whid
corresponds to one of the representations hereone of thg
integrals take non-zero value and hencer ntransition ig
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magnetically allowed. But the signal correspondmghis
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transition will be very weak because the interactid the electric
component of electromagnetic radiation with fornefgde will

Unit 11 be very much greater than that of the magnetic copt.
Symmetry

oriented

spectral n-n" transition:

methods

The arrangement of electrons in the excited state i

NOTE @i = (n) () ()

By a similar argument the representation corresjpgid
excited state is arrived at

Ti=B1A1B1= A1

[0 The direct product representation of the grourdiecited
state is

A1 A1 = A1

This direct product representation corresponds ke t
representation of the z-axis.

[0 One of the integrals take non-zero value.

Hencer-n transition is electronically allowed.

11.4 Check Your Progress

1. Define nat transition

2. How to prove water IR active?

3. What are transition present in UV, Visible or eteaic
spectroscopy?

11.5Answer To Check Your Progress
1 The arrangement of electrons in the ground andexkstate
during this type of transition is shown below.

@,=(*)(") @=(7*)(n)(7T")

2 There are three vibrational modes in the water oubée Two
of them have Asymmetry and one has Bymmetry. Using group
theory, it is possible to predict which of them Hreactive.

Self—lnstrqctional
Material 3. UV, Visible or electronic spectroscopy is mainlyphgable to
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organic molecules. In such cases, transitions sdoetween
electronic energy levels. In the case of molecutesglectronic
energy levels, correspond to molecular orbital gnégvels. The
various molecular orbitals aseandr (bonding molecular
orbitals),c” andn” (antibonding molecular orbitals), n (non-
bonding

11.6 SUMMARY

» Spectroscopy studies like IR and Raman the interaadf light and
matter. The symmetry operations of a molecule farrmathematicq
group. Matrices that multiply the same way as thamimers of a grou
form a representation of the group.

» Acorrding to this reducible representation canflé sxto number of
representations and among them one is totally synamevhere the
characters are the traces of the matrices of firesentations.

11.7Keywords

IR absorption - It is not necessary for a moledolédnave a permanent elect
dipolemoment for IR absorption.

Electronic spectroscopy - UV, Visible or electrorspectroscopy is main
applicable to organic molecules. In such cases)sitians occurs betwedq
electronic energy levels

11.8 Self Assessment Questions And Exercises

1. Defineapplication of group theory to IR and Raman spéctra
2. Explain application of group theory to electronpestra (HCHO and £H4)

11.9Further Reading

1. Chemical Application of Group Theory, F.A. Cotton, John Wiley
and Sons Inc. New York,1971.

2. Group theory and its applications to Chemistry, K.V. Raman, Tata
McGraw-Hill Publishing Company,1990.
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BLOCK — 4:

CHEMICAL KINETICS
Unit-12: REACTIONS IN SOLUTION

Structure

12.0 Introduction

12.1 Objectives

12.2 Reactions in solution

12.3 Factors which influence the reaction rates in sofut
12.4 Application of ARRT to solution kinetics.

12.5 Bronsted — Bjerrum equation Chelate effect
12.6 Check your progress questions

12.7 Answers to check your progress questions

12.8 Summary

12.9 Keywords

12.10 Self-assessment questions and exercises
12.11 Further readings

12.0 Introduction

Chemistry, by its very nature, is concerned witharade.
Substances with well-defined properties are coederiy
chemical reactions into other substances with wdiffe properties.
For any chemical reaction, chemists try to find out

a) The feasibility of a chemical reaction which can be
predicted by thermodynamics (as you know that ati@a with
AG < 0, at constant temperature and pressure ibfegs

b) (b) extent to which a reaction will proceed can be
determined from chemical equilibrium;
0 (c) speed of a reaction i.e. time taken by a reactd

reach equilibrium.

Along with feasibility and extent, it is equally partant to know
the rate and the factors controlling the rate ahamical reaction
for its complete understanding. For example, whieiameters
determine as to how rapidly food gets spoiled? Hovdesign a
rapidly setting material for dental filling? Or wheontrols the rate
at which fuel burns in an auto engine? All thesesfjons can be
answered by the branch of chemistry, which dealls thie study of
reaction rates and their mechanisms, called cheikigetics. The
word kinetics is derived from the Greek word ‘kirg¢sneaning
movement. Thermodynamics tells only about the belasi of a
reaction whereas chemical kinetics tells about thte of a
reaction. For example, thermodynamic data inditiaé diamond
shall convert to graphite but in reality the corsven rate is so
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slow that the change is 1 perceptible at all Kinetic studie:ot
only help us to determine the speed or rate ofeaetal reaction

but also describe the conditions by which the ieaatates can be

altered. The factors such as concentration, teryrergressure
and catalyst affect the rate of a reaction. Atrtteeroscopic level
we are interested in amounts reacted or formedtenthtes of
their consumption or formation. At the moleculardk the
reaction mechanisms involving orientation and eperof
molecules undergoing collisions, are discussethifnUnit, we
shall be dealing with average and instantaneoesofataction
and the factors affecting these. Some elementagsidbout the

collision theory of reaction rates are also gidawever, in order

to understand all these, let us first learn ablositreaction rate

SOLUTION KINETICS
When a reaction takes place in solution

* The solvent is in larger than the reactant

» Solvent concentration is constant during the coafgeaction.

» Theories of solution kinetics are more complicdtexh gas phase.

* In solutions the collision between the reactanestarmed as encounter.

Unit -12
Reactions in solution

NOTE

» Some of the reaction has same rate in solutionegpassvell as gas phase Eg:

N20s, Osdecomposition etc.
The rate of reaction in gas phase and solutiongphesequal only in ideal
solution

12.1 Objectives

After going through this unit, you will be able to:
Understand about the kinetics and rate of the icgact
Understand the reaction rate in solution

Explain the concept of Bronsted and Bjerrum equatio

12.2 REACTIONS IN SOLUTION

There are many reactions which take place moressr &t the same rats
gaseous and solution phases (e.g. decompositiddHaFCH2l and NOs in
CCls solvent; isomerization of ginene). This shows that the reactions prg
by the same mechanism in both the phases. Thetoamver many exceptiof

Example: the reaction between2kG)sN and GHsBr to give a quaterng
ammonium salt is considerably fasin polar solvents like nitrobenzene tha
nonpolar solvents or in the gaseous phase. The aetivabmplex in th
reaction is more polar than the reactants.

185

Self-Instructional Material



Unit -12 Reactions 12.3 FACTORS WHICH INFLUENCE THE
in solution REACTION RATE IN SOLUTION
(i) For ionic reaction

A. Reaction between an ion and molecule the
NOTE Arrhenius frequency factor has normal value.
B. Reaction between same sign, the value of “A” is Imuc
lower.
C. Reaction between opposite sign, higher the valutAtf Hence
the frequency factor is the direct measure of ohtbe reaction.
(i) Approaching of species to each other

Rate of approaching of reacting species to eadtr alépend upon
the rate of diffusion of the two species througlveot diffusion-
controlled process that are very fast. The diffastontrolled
process depends upon the viscosity of the medinrfaw viscous
medium, higher the diffusion takes place.

(i) Cage effect

The reactant species after the collision are raddther by solvent
species for about 0to 10'%. During this time lag, the reacting
molecules collide with each other or make a sugtabtection for
the favorable reaction to take place. The reactimaecule held
together for a period of time by solvent cage igl 4a be cage
effect or frank-Rabinowitch effect.

(iv) Energy and orientation of reacting species

This is controlled by the nature of species. Inggah the reaction
would be fast in a solution in which the activateanplex is more
stable. Activated complex is more stable in potdvent when it is
polar and vice versa.

(v) Effect of Solvation

Solvation is based on polarity, higher the dipoldl wnore
solvated by polar solvent.

H H? H

H H H

Here, products are two separate ions and activedetplex has
partial charge as above. In polar solvent suchtesbenzene there
Self-Instructional Material IS more solvation of activated complex than thectaa. The
effect of solvation lowers the activity co-effictenf activated
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complex {* &) and thus rate become hi
On the other hand,

Y'+RX" = (YJ' ............. R >€+) ~ YR+ X

Here, there is decrease in polarity as the activedenplex is formed. Activated

complex is less solvated than reactant in polaresdl And thus, decreases thg

rate.

U

12.4 APPLICATION OF ARRT TO SOLUTION KINETICS

For a general bimolecular reaction,

A+B < X* - Product
P
a .
K* = (Oa= activity)
a, [3g
_ yc
K'=_"~ -0
yACAWBCB

c*=k*YerccL (2)
y¢ A B
Rate of the reaction is rate of decomposition ¢ivated complex i.e.,.X— P

X#must have one of its vibrational degrees of freeedrich would be highly
unstable. This is responsible for the decompositiod” in product.

Rate =y[C * ]
v = frequency of vibration

:J,K’tyLyB[(ig; - (3)

Any simple bimolecular reaction in solution
Rate = K Ca Cs — (4)
Equation (3) = (4)
Kcc=* VY ec o
S A B AB
yz
K = 1aka (5)
) v

According to Boltzmann equation
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hy=KgT

_ KgT
4 h
Substitute in equation (5)

K :KBTyAyB K¢—>(6)
S h yi
For ideal solutiorya, ys ,y* =1

_KeT =
QK_TK hence

K=k, 28 - 1)

For unimolecular reactionk= K ; YA

y¢
have the solvation of reactant and activated comple almost
same both are having almost similar structure, then
Ks: Kg

Example: chemisorption of s, Os.

12.5BRONSTED - BJERRUM EQUATION

Bronsted Bjerrum explain the relationship betweenia
strength and rate of a chemical reaction in satutAnd this effect
is involved in non catalytic reaction.

For a general reaction,

Ky #
A4 BZ8 & ABAAYZET | s Product

CACB yAJ/B
cr=k*"Vecc . @)

AB % A B
} ne

)Pk CC Yate——(3), kok'=ko
dt 3 AB 3 A B F3
}AB
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(VAVB\

y=k!|——lc,c, - @)
b)) 0
(VAVB\
| — | = kinetic activity factor
\ yas /
For a reaction, A+ B, P
y=Kr Ca Cg -------- (5), Equating (4) & (5)
kCC:KyAyB.C.C , k:kyAyB ------------ (6)
rAB 0.z A B r 0 . =
J’AB ;AB

Taking log on both sides,

logk, =logko+ logya +logye —logy 6 A)

According to Debye Huckel theory of strong elegttelthe activity
coefficient

related with ionic strength atg y=-AZ 2i\/ﬁ
A- constant = 0.51di{* mol ** for aqueous solution at 25
Zi = charge of i "ion

1 . . .
H=" ZC‘ Z?  Ci= concentration, iz valencies of species
2 i

Substitute equations (7), (8) and (9) in equati@X) 6
Iog% = —AZf\/ﬁ - AZE\/ﬁﬂL A(Z, + ZB)Z\/Z
=-Au|7+22- @, + 2,F]
:—A\/ﬁ[Zz+Zz—ZZ—ZZ—ZZ z]
k.

09— =+A22,7, \/p
Ko

For an aqueous solution at'@3his equation becomes
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Unit -12 Reactions
in solution

NOTE

log % =1.0Z,Z, /1

when ionic strength is zeror = ko . This equation is known ¢
BronstedBjerrum

equation. This equation shows that variation ofwith \/ﬁ
depends on &z .

The plot of log k/kovs [t will be linear.

Case (i)
When 2.Zg=0 i.e. one of the reactant is zero charge (i.a.
electrolyte)

Log k =log ko, hence increase of,/u has no effect

Iog_kr .

Ko

1 §”

“‘\a

Eg: [Cr(urea) ] +6H,0 — [Cr(H,0).J" +3urea, Za=3, Zs =
0
CH,ICOOH+ CNS — CH(CNSCNH+ 1 -

Case (ii)

Iogiincrease

Ko

When ZaZg = +ve, ZaZg both has same size.

with increasing

Self-Instructional Material \/ﬁ , SO +21~ - | +250" VZ2,2=2
2 8 2 4 B
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2[C0(NH3)SBr ]+ Hg? + 2H0 - 2[Co(N|—s!)5H 2o]+ HgBr

Z,,Z,=4

Case (iii)

When Z.Zg = -ve Iogﬁdecreases with increasin%
(MHO +2Br +2H" ~ 2HO+Br  Z,Z =(-1)(1)=-1

[CaNH,)BI[" +OH™ - [Co(NH,)OH]+Br™  Z,,Z;=-2

12.6 Check Your Progress

1. What is mean by rate of the reaction?
2.How does the rate of reaction depend on volume?
3.Explain Enzyme catalysts?

12.7 Answers to Check Your Progress Questions

1. The rate of a reaction is the speed at which a aameaction happens.
If a reaction has a low rate, that means the m@dsccombine at a slower
speed than a reaction with a high r&@eme reactions take hundreds, maybeg
even thousands, of years while others can happkesssthan one second

2.The rate of reaction r for the reactior- is given by : r=k[A],where k is
the rate constant and [A] is the concentratiorhefreactant.(l've assumed
the reaction to follow first order kinetics.)Scsrdirectly proportional to the
concentration of the reactant. rate increases @easing reactant
concentration. However, the concentration of Aawially in moles/Liter,
which is moles per unit volume. Hence, r is invrgeoportional to the
volume and the rate decreases on increasing vobdnhe reaction vessel.

3. Enzyme catalysis is the increase in the rate ofoagss by a biological
molecule, an "enzyme”. Most enzymes are proteingl aost such

processes are chemical reactions. Withinthe enzyme

generally catalysis occurs at a localized sitdedahe active site.

12.8 Summary

v" Chemical kinetics is the study of chemical reactionith respect to
reaction rates, effect of various variables, resgeanent of atoms
and formation of intermediates.

v" The rate of a reaction is concerned with decreasmmcentration of
reactants or increase in the concentration of psdper unit time. It
can be expresseipplication of ARRT to solution kinetics,

v' Mathematical representation Bfonsted Bjerrum equatidh has to
be determined experimentally and cannot be pretlicte

12.9 Keywords
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Cage Effect:Thecage effecin chemistry describes how the
properties of a molecule are affected by its surdings. First
introduced by Franck and Rabinowitch in 1934,dhge
effectsuggests that instead of acting as an individuaigbe,

molecules in solvent are more accurately descriseah
encapsulated particle.

Solvation effect:If the polarity of the product is different from
that of the starting materiaplvation changes the thermodynamic
properties of the reaction. If the transition sexperiences the
change in polarity (usually charge buildugpd)vation changes
thekinetics properties of theeaction

12.10 Self-assessment questions and exercises

1. Explain in detail about the rate constants.
2. Discuss in detail abougaction rates in solution
3. Distinguish theBronsted and Bjerrum equation

12.11Further readings

1. C.M. Guldberg and P. Waage,"Studies Concerning
Affinity" Forhandlinger i Videnskabs-Selskabet i
Christiania(1864), 35

2. P. Waage, "Experiments for Determining the Affinity
Law" ,Forhandlinger i Videnskabs-Selskabet i Christiar{ie864)
92.

3. C.M. Guldberg, "Concerning the Laws of Chemical
Affinity", Forhandlinger i Videnskabs-Selskabet i
Christiania(1864) 111
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Unit-13 Salt Effect

Structure

13.0 Introduction

13.1  Objectives

13.2 Primary salt effect

13.3  Secondary salt effect

13.4 Influence of internal pressure

13.5 Effect of solvent

13.5.1 Reaction between ion

13.5.2 lon-dipole reactions

13.6  Effect of substituents on reaction rates

13. 6.1 Hammett equation

13.6.2 Taft equations

13.7 Check Your Progress

13.8 Answers to check your progress questions
13.9 Summary

13.10 Keywords

13.11 Self-assessment questions and exercises
13.12 Further readings

13.0 Introduction

In our last two modules, we took up solution kiogtin detail. You
now know that solution kinetics is the kinetic studf chemical
reactions taking place in solution phase and thereaf solvent has a
predominant influence on the kinetics of such rieast
In general, the solution phase reactions can be
classified as lonic reactions and Non lonic reasticAnd here, we are
concerned with the kinetic study of ionic reactions
A+B—P ..(1)
Rate = k[A][B] ...(2)
where k is the rate constant for the reaction.

We found that only Classical Thermodynamic
approach of transition state theory can be utilimedetermine the rate
constant of ionic reactions or solution phase reastand studied the
effect of solvent on rate constant. In this modtdeus will be laid on
primary salt effect and secondary salt effect.

13.1 Objectives
After going through this unit, you will be able to:
* Understand the concept behind the salt effectarstiution.
* Understand the mechanisms behind effect of pressute
volume of activation in solution.
» Learn about th&ffect of substituents on reaction rates
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13.2PRIMARY SALT EFFECT

By doing a neutral salt to the reaction mixtureihgv
either type of ions, the rate of the reaction isistderably
affected according to the Bronsted Bjerrum equaisosaid to
be primary salt effect or neutral salt effect.

It is experimentally found that the rates of secordker
reactions between charged species are affectedgbtroy the
ionic strength of the solution, this quantity bedefined as

| = 1/2.C; 72

where Gis the concentration of each ion present in thatsoi
and Zis the charge number of the ion. When the reaating
are of same sign, increase in ionic strength irr@eadhe rate
whereas when the reacting ions are of oppositessigarease in
ionic strength decreases the rate.

13.3SECONDARY SALT EFFECT

This arises if one of the reactants is a weak eté that can
be stimulated by catalytic reaction. The rate o teaction
depends upon the amount of salt added in a catakéction.
Actual change in concentration of reacting ion loigling the
salt externally.

This effect is not having a direct influence. Buwill influence
the concentration of reactant. The equilibrium tansfor the
dissociation of weak acid HA can be written as

[He][a]vy

= HA] Y

Addition of salt will influence the activity co-efient they also
influence the concentrations of H+, A- and HA ahid tvay the
catalytic activity has been lowered/increased, imiluence rate
is said to be secondary salt effect.

13.4INFLUENCE OF INTERNAL PRESSURE

We know the rate constant in solution has the icelahip with
gas phase rate equation.

K =KBTK¢yAyB N (1)

s h Vt
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0o

K="eTk*_ (2)
h

Ko= rate constant under ideal conditions.
For an ideal solution yEVvaYy #£1

activity co-efficient according to langmuir is givey
RTIn y :V(Pl/z _ |:)1/2)2
1 1 1 2

yi=ViA
V1— Molar volume
P1— Pressure of solvent
P>— Pressure of solute
RT Iny1=ViA - (3)

RT Inya= Va An; RT Inys= Ve As; RT Iny = VA7

RT Inya + RT(lny?/-faT INy* = Vala+ VeAs- V' A
RTIN' Y275 =\ An+ Ve ds- V7 A7

)

RTIN > = v\ Ap+ Ve As- V* 1

0
The molar volume of reactant and activated comptexequal.
Case (i)
If Ap=Ds=A"

Then the solvent will not affect the rate of reawtin solution.
Case (i)

Psolvent= Preactan@NdA* is large
Then the reaction rate in solution would be lowntideal solution rate.
Case (iii)
When Rovent= Phactivated complex has much different from that of reactant

than the RT Ln KK, will be positive value and make the reaction rate i
solution high, that is RT Ln s large.

Thus the kinetic study of solution is very complezhbut in general,
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e product of the reaction is polar, then thaation is favoured in

polar solvent.

(i) If the product of the reaction is nonpolar, thee thaction
is favoured in non-polar solvent.

(iii) If the product of the reaction having high interpatssure
then the reaction is favoured in solvent havinghhigternal
pressure.

13.5EFFECT OF SOLVENT

It can be classified in the following topics

13.5.1REACTION BETWEEN IONS

The electrostatic forces between ions are muchmgémothan
non electrostatic, forces. The pre exponentialofacbf ionic
reactions depend in simple electrostatic princifiidgons are
oppositely charged the pre exponential factorsadreormally
high, where as if the charges are the same theglarermally
low.

The reaction between ions in solution has markedfigcted
by solvent and its dielectric constant. In orderetplain this
effect there are two models into account.

(i) Single sphere model
(i) Double sphere model
Single sphere model

Here slightly different relationship has been aidi from that
of double sphere model.

a) The reacting ions are regarded as becoming mengecne
single sphere which has charge equal to the algebm of the
both the ions.

b) The rate equation for this model is derived by Born

c) Consider the process of charging a conducting spbér
radius “r” from an initial charge if zero to a fingharge 2.

(d) This process is carried out by transportingmfranfinite
distance to small increment of charge equal #a ed
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A = Parameter which varies from zero to ‘z’.

At any time the charge of the sphere has writtedesand if at a given
instant the increment of charge is at a distanfrerr the ion the force acting
onitis

_ el

f= 2
ATE,EX
deedd _ Ald/

df = 2884 _ A€dl g
ATESC  ATE,EX (1)

The work of moving the increment from x to dx is

AefdAdx
dw= 5
4TE, X

The total work of charging is obtained by carried by double integration

AOQZ’ Xaar
- z d A 1
. A i
) X2 41168 L XJa
2
ez _ 1\|—/] —|Z egzz
ke of2|" v
o _3°¢ o _GdZ ye
G esp) _?7758‘8 G es= : s
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The charge in electrostatic AGY%s is

2 2

Unit - 13 QGO es= e ((Z +¢ZB)2 _Z°A  Z B) ~ 6)

| A

8TE,E
Salt effect AN 4 Va V)
Free energy per molecule is

NOTE AGO¢eS= Ne ((ZA +;B)2 _ ZZA B ZZB\) = (5)

BTELE( ¥ Va V)

AGi es — AGi es T+ AGi nes.

G%. = Electrostatic contribution to the Gibbs energy of
activation

G” e« = Non-Electrostatic contribution to the Gibbs enesfly
activation

Substitute equation (5) in ARRT equation

KT _ace»
o 0G” IRTr

h
Nez((zA+ZB)222A ZZB\

_RT st ) %%~ (6)
Nh '

K =

K, =

Taking natural logarithms we obtain

Ink,=|nﬂ_e_ S ((ZA+¢ZB)2_22A_ZZBM(7)
2h BIEERT\ ¥ Va Vs)

This may be written as
& (z22+722+22 2 2
Ink = In k- N T a2y
BTELERT 4 Yo Vs)

wheny” =y, =ys
The equation becomes double sphere model

Double sphere model
According to ARRT, general reaction is as follows

Self-Instructional Mpterial lons - A.C - product
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Thus k. = %e RT oo (2)

It is a thermodynamic statement of ARRT

The charged ions in solution are considered to be
conducting sphere and solvent regarded as fixddatiie

constant and hence the spheres are hard and rigid

(,’ ‘_\
[ =

/

ya andys = Radius of two ions, #& and Ze = the charges on the
ions

e =1.602x18°C.

Initially the ions are infinite distance apart.this particular model
known as double sphere model (hence no force battireen)

When the ions are separated by a distance ‘x’dreefacting
between them is

according to coulombs law

Z z2¢
f=—A B _ —eeee- 2
i @
Work done in moving two ions together to a distaticés given
by
_ 236 |
dw= dx, ‘-ve’ sign implies the decrease af.
ATE,&C
The work done on the system in moving the ions fkeat to X = das
& zz7&%B1
Idw=—TBZA% dx , w=-_A8 _,ax
o X ATEE ATELE" X
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228 17 z2¢é

W=- _| W=A B ===
ATEE | XJ(] 4TEE g

@)

This work is +ve when the ions are same sign. This
ve if opposite charge. Hence the work is electtmsta
contribution to the Gibbs free energy of activation

NG 7,28 AGE
="""B" (electrostati}+ G (nonelectrostatiy
NZ
AG¢ zﬂ%é_ +AGnes¢ """"" (4)
[o] AB

Substitute in equation (1)

AG*® ZaZge®N  _AG

—— RT ~q.2-% _ =®rT
k.=——€ Rt k=—e RT.dnedrEos o RT
Nh ! Nh

RT 86w _ z,zge’N)

Ink = In T\lﬁ RT @ RTdwmdEos
T -8 nes ZZé€EN
Ink=In—e RT —AB  —mmt (5)
h 47E,ed, s RT
k Z Z éN

Ko 47E,&d ,\RT

Ko = rate constant of reaction in solvent of infindelectric

constant. Plot of kvs 1&£ will give straight line. It is
experimentally verified but there is a deviatiorlow dielectric
constant. From the slope thgsdtan be calculated, it has the

the value of few hundred picometer ¢£)
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13.5.2 ION-DIPOLE REACTION

lon-dipole

In reality, many ions have a distribution of chargend this makes a
difference to the electrostatic interactions. Murtferest is between ion and
dipole molecules or between two dipole molecules.

The electrostatic free energy contribution is freimgle sphere model
Sphere of radius —r
Net charge - &
Dipole moment ¢
p°= gz 3 - ()
< 8ma

1678’
For a bimolecular reaction

A+B - X* = product

2.2 3 2

er + ,UA 3_}@)

87 & A o A

2.2 2

ZBe + 3'UB 3 _>(3)

87&Evsr B o B
ZA+ZE92 3U, —»(4)

es() —srEa— " 1eTEE

AG.(A) =

AG,(B) =

2 2 2
e (z +2) 2 2 k
AG? | A 8 __Azr__B |+Z frl 3_ 5)
o \ # A B) A B)
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The non electrostatic contribution S&@” nes

AG¢ = AG¢e5+ AGines

Unit - 13
Salt effect From ARRT

_ € ((z+2) L2 ,2) 3 (WA lh #%
NOTE Ink = Ink,— |K— 28 |+r |) Jsm;:lcl{_3_ 21 5,(p)
o % A B o) #

Assume radii do not vary as much as the chargelgude
moments, it is a useful approximation to treat tiahthe
same and equal togl

Va=Ve=V:=0Osp
Then equation (6) becomes

_ _ Z
Ink _ InK, A%é K ”3” ﬁ()

If both the species are charged the second teequation (6)
or equation (7) is usually much greater than tlirel th

If either reactant has no charge, however, the feran
becomes predominant.

If the reacting species are uncharged, convertedaictivated
complex has more polar than reactantq large compared to
ya andys, the rate constant increases with increasing ctisgte
constant.
2 2 2
DuP= MMM - (8)
(1.602x102°Cm

1.602102° Cm is the dipole moment of two elementary
charges (1.6021.0"°C) separated by a distance’i.

13.6 EFFECT OF SUBSTITUENTS ON
REACTION RATES

How the rate of the reaction or equilibrium constaitl
affect by substitution in either m or p was expéinby
Hammet. It is a linear relationship between Gible® fenergy
of any two set of reactions.

Self-Instructional Mpterial
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13.6.1 HAMMETT'S EQUATION

According to Hammetts relationship the rate corsfanthe reaction
of one compound is related to that for the unstiistl parent compound in
terms of two parametepando

For rate constants the relationship is
IogE = po
Ko

0 - Substituent constant is a number (+ve of —ve)
+ve = for electron withdrawing substituent.
-ve = for electron releasing substituent.
p - reaction constant is n number due to externadlition, solvent etc.

p is +ve if solvent will assist the electron witheliag nature or releasing
nature.

p is —ve if solvent will against the electron withdiing or releasing nature.
CeHsCOOH «» CsHsCOO + H"  p =1 (constant)
NO2-CeHs COOH <> NO,-CeHs COO + H"  om=0.710

Iog% = po,=0.710x1

k
log—=0.710
Ko

logk=logk, + 0.710

ko log ™ 0.710

Ko

£= 5.31

ko
k=k,5.31

ie. Rate of ionization of substituted benzoic asi®%.31 times greater than
unsubstituted benzoic acid.

Using the same value @ and o for hydrolysis of benzamide in 60%
ethanol at 80 We can calculate the m-nitrobenzamide which can |
hydrolysed 0.615 times as fast as benzamide.
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log k=logk,+ 00 s

When we plot log k vssis a linear relation, from that we can
calculate the value ¢f.

log K slope=P

log Ko

S

Linear free energy relation of Hammet equation:

The rate constant of a reaction related with fireergy of
activation by.

KaT 2%

&R e (1)

k=

Taking log for equation (1)
k T i
logk=1log ® - A
h  230RT
Hammett equation
logk = logk,+ po (4)

Substitute (3) in (4)

T AG” T A&7
22 cogk,— —-° _+po
log ks ™% 30RT 9%r zomr
# #
%: AC_ ox 230RT

AG" = AG] - 2.30RTpo (5)

AG” = free energy of activation for substituted compmbun
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AG™ = free energy of activation for parent compound

Equation (5) with a particular value pf applies to any reaction involving a
reactant having series of substituents.

For another series has differgntalue and by assumirmgis constant.

AG* =AG* -2.30RTpo

4
0C 0GB H30RTe ... (6)
- P
o
Equation (5) may be written as
AG AG*
= =—0-230RTg -~ (7)

Subracting (7) = (6) ©

AG" AG”
— 0 =0
P P
AG” - P2 AG* = congtant.
0 0 0

Then there is a linear relationship between Gibitesgy of activation with in
any two set of homogeneous reaction.

13.6.2 TAFT EQUATION

When Hammet plot of log K/Kagainsto are extended to the reactions of
aliphatic compounds and to those of o-substitutedzene derivatives the
straight line no longer result. Thus Taft derivewther equation, including
polar factor, conjugation factor and steric effbéeince used for aliphatic
compound also.

logKIKo=P+C+S
P — polar factor
C — Conjugation factor
S — Steric effect.

He studied acid hydrolysis of ester as well as tgskolysis of ester, single
equation is not hold good for both the case. THarpeffect has neglected in
acid hydrolysis,
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IOg (K/Ko)base= P+C+S
|Og (K/Ko)acid: C+S
log (K/Ko)base= P + log (K/Ko)acid

log (K/Ko)base- 109 (K/Ko)acia= P = P g”

This equation is known as Taft Equation.

13.7Check Your Progress

1. What is the difference between the primary and rsé&ry salt ?
2. What is the effect of ionic strength on the rateeafction?

13.8 Answers to check your progress questions

1. Primary salt effect. It has been observed thatdtesof a reaction
can be altered by the presence of non-reactingest ionic species
in the solution. This effect is profound when theagation takes
place between ions, even at low concentrations.

The term “secondary kinetic salt effect” is usedindicate a
kinetic. salt effect due to a change in concerarabf the reacting
molecules on. account of a change in the interioriorces.1,2.
Such effects are very commonly met in the studykiofetic
reactions.

2.This question might be simple for those who migiten
understood the concept of CHEMICAL KINETICS in whithere’s
a beautiful equation given to us with which we &iad out rate of
reaction in addition to this entropy also changesith increase in
IONIC strength of a compound the chemical reaction
ratedecreasesome factors affecting the reaction rates migta als
be included such a s temperature,pressure andrdoaoen mainly

13.9 Summary

v In this module, focus was laid on primary salt effand
secondary salt effect.
v It has been observed that the rate of a reaction bea

altered by the presence of non-reacting or inericigpecies in the
solution. This effect is profound when the reactimkes place
between ions, even at low concentrations. Thisiarfte of charged
species on the rate of the reaction is referrexbtsalt effect.
v The salt effect is classified as Primary salt dffaad
Secondary salt effect.
v The primary salt effect takes into account theuifice of
electrolyte concentration on the activity coeffitieand hence the
rate of the reaction.
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v The secondary salt effect is the actual changén
concentration of the reacting ions resulting fréra &ddition
electrolytes

BN t
pf  Unit — 13
Salt effect

13.10Keywords

Primary salt effect- It has been observed that the rate of a reactarbe
altered by the presence of non-reacting or ingnitispecies in the
solution. This effect is profound when the reactiakes place between
ions, even at low concentrations.

The secondary salt effectlt is the actual change in the concentration of
the reacting ions. resulting from the addition lefc&rolytes

13.11 Self-assessment questions and exercises

1. Explain in detail abouiffect of solventwith example.
2. Explain thedielectric constant
3. What is meant bidammett and Taft equatiohs

13.12Further readings

1. Mendham, J.; Denney, R. C.; Barnes, J. D.; ThoiMas, K.
(2000), Vogel's Quantitative Chemical Analysis (6th), New York:
Prentice Hall, p. 28SBN 0-582-22628-7

2. Physical chemistry Peter Atkins, Julio De Pauld"@dition,
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Unit-14: ACID BASE CATALYSIS
Structure

14.0 Introduction

14.1  Objectives

14.2  Acid base catalysis-

14.3  Acidity functions

14.4  Bronsted relations

1.45 Zucker Hammett hypothesis

1.46 Enzyme catalysis

1.4.7 Effect of pH

14.8 Influence theTemperature on enzyme catalyzed reactions
14.9 Check your progress questions

14.10 Answers to check your progress questions
14.11 Summary

14.12 Keywords

14.13 Self-assessment questions and exercises
14.14 Further readings

14.0 Introduction

The acid catalysis and base catalysis,a chemical
reaction is catalyzed by an acid or a base. By &smhlLowry

acid—base theory, the acid is the proton (hydragen H") donor

and the base is the proton acceptor. Typical r@astcatalyzed by
proton transfer are esterification’s and aldol tems. In these
reactions, the conjugate acid of the carbagmgup is a
better electrophile than the neutral carbonyl grivsglf. Depending
on the chemical species that act as the acid oe, bestalytic

mechanisms can be classified as either specifatysas and general
catalysis. Many enzymes operate by specific catalys

14.1 Objectives

After going through this unit, you will be able to:

. Understand about the Acid and base catalysts.

. Understand the methods of determiningEneyme
catalysis

. Explain the concept dadffect of pH and temperature on

enzyme catalyzed reactions

14.2 ACID BASE

A reaction is catalysed by'Hr H;O" ion is said to be
specific acid catalysis reaction. Some reactiaratalysed by
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any Bronsted acid is said to be general acid csigahgaction.
If a reaction is catalysed by OH- ion is specibese catalysis
or by any base are said to be general base catalyaction
Some reaction catalysed by both acid and baseatets be
acid-base catalysis.

If a reaction is carried in aqueous aC|d t te
r=K,[S]+Ky[S] T (2)

If OH also included
=k [S]+K [S[H]kolsl[on] -
Divide through out by [S]
kK=K #+K [H*]+Kofon] - (3)
Note:
r=K|[s]

- K
[s]~
Skrabal diagram:

The plot of log K vs pH of the solution is knownSkrabal diagram.

For mutarotation of Glucose

Slope=-1
Slope =0
|

pH

CASE |

For acid catalyzed reaction:
K=k, [n]
LogK = LogK ,,. + Log[H*]

LogK=LogK,, . - pH
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CASE I K=K, [oH]

Logk=LogK__ +Log[OH"]
K
LogK=LogK_ - * L09ﬁ+

LogK=LogK,,,-K,+ pH

CASE Il

The horizontal line with zero slope correspondsrioatalysed
reaction. Zero order with respect to acid/base

14.3ACIDITY FUNCTIONS

The first acidity function proposed, other than it is due to
Hammett and Doyrup, is based on equilibrium oftgtpe

B+H" & BH”
Eg: CyHsNH, +H™ « CH.NH,"

Equilibrium constant for such reactions is
- ], v
Bit] g
Y..Y,.
Where the Y'’s are the activity co- efficient. Wad, [BH'] can
be distinguished

+
Spectrophotometrically, it is possible to measw[%]] , and K

also can be measured in dilute solutions.

Taking log in Equation (1)
[BH™] Y .
+log_ B"

log k = log —
[BI[H"] YgY,-

[BH™] N Yo,
logk - log =log[H ]-logY . + log
[BI " Y
[BH']= “log &
logk —loglP"™ l=-loga log
[B] [H] Y

BH*
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logk — Iog[BH 1= —-loga . __Yi
H
[B] . YBH+
Y,..[H']=4a,,
Left hand side of equation can be measured by ewpatal way. The

function on the right hand side can be measure@cidic solution by
introducing a suitable indicator and measuringdbrecentrations of the two

species. The quantity on the right-hand side.
Y, - :
Ho=— Iogm[ a, Y_) Hammett acidity function
BH*
S+H"' & SH* (rapid) -[SH"]”

SH™ - produc(slow)

If the second step is slow and rate controlling stiee overall rate is
proportional to the ion concentration of activatednplex [(SH)]*

y=k’[SH*T
. [SH+]¢Y¢
K.= r v a— 1)
[SH'TY,,
- KISH" Y.
K#=8a,. [SH'T? =M ________ (2)
s a_ . Y¢

a” andY,are activity coefficient.
a . [SH']Y.

For the pre equilibrium,i<S — SH — sH = 3)
aa, [S] Ysa,.

From equation (2) y=k*[SH'T

K’k *[SHT]Y
rate=_° SH
F4
_ [SHT]Y.
From equation (3) =t
[S] Ysa,-

14.4BRONSTED RELATIONS

Since catalysis by acids and bases usually invdivesransfer
of proton from or to the catalyst, it is natural seek a
correlation between the effectiveness of catalydtits
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strength as an acid or base. The most satisfamttonship
was given by Bronsted termed as Bronsted relations,

() The catalytic constant is related with dissociatonstant K
by,

k =GK“

a a

Where, G and a are constan, Jkatalytic constant, K
Dissociation constang, always less than unity.

(i) Similarly, for a base catalysis
k =GKF
b b b
| I( 1 \|ﬁ k=1
G = — b K
K, :

where k is the dissociation constant for the basgthat for its
conjugate acidp is a constant that is again less than unity.

Modification of above equation:

If we applied this relation to an acid catalysisaton of
dibasic nature i.e. acid has more than one ionézpbdton or base
more than one centre to accept proton, the moticashould be
made.

CH3(CH2)COOH - Long chain fatty acids
HOOC-CH(CH.)nCOOH — Dibasic acid

() In the dibasic acid there is negligible intetian between the
two carboxyl groups. The dissociation constanthef dicarboxylic
acid is twice that of the monocarboxylic acid. ®irtbhe ion can be
formed by loss of either of two proton. For the sareason the
catalytic activity or catalytic constant for dibascid is twice that
of monobasic acid.

Since the ratio of 2 in the acid strengths leadshéoratio of 2 in
the catalytic constant and this is generally lbs®1 2. This anomaly
is avoided if both the acid strengths and catalglmstant are
divided by the number of proton involved in thesdisiation.

ial
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(i) In the case of the two acids HOOC(gHCOOH and
HOOC(CH)nCOO , both of which have one dissociable proton, th
catalytic strength are the same. On the other htdredacid strength of
second is one half of first since the I@®OC(CH)COO in which the
second dissociates has two points at which a pnotay be added, where
as the ion of the first acid has only one siterdimove the inconvenience it
is necessary to multiply the dissociation constdiiOOC(CH)COOQO by 2
before inserting it into the equation

k (gK 7
=G |2
)
B
g=G'( P)
q b\qK)

p — number of dissociable proton bound equally gfiyim the acid, while
g is the number of equivalent positions in the augaje base to which a
proton may be attached.

The Bronsted relationships are special cases oflitlear Gibbs energy
relationship.

logk =logK,+ dp
logk = logK, +Jdp

§ is same in both the cases but the reaction canstamd p are different
in equilibrium and rate constant equations.

1
_Iogkzilog K+ O
p p 1 (o]
and iloq k= "logk+ 0
1 1
Subtraction leads to-l09k- __log k = constant
1Y 0

1
kp

And therefore log— = constant
K #

e
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This may written aslong = congant
Unit— 14

K*
Acid Base catalysis
or k=GK
NOTE 14.5ZUCKER- HAMMETT HYPOTHESIS

The acidity function is used to check the existerafe
correlation between and rate constant, a pre-equilibrium of the
type as give below can be established.

K

X+H* _, XH*(fas) XH'— P (slow)

The second step is slow and rate determining step.
The activated complex has equilibrium with furthetivated
complex.

Kl

XH* , [XH'TF 1P

rate=k [XH " 1" ------- (1)
[XH'ly” &
Keq: + =
[XH* 1Y, B
K JXH" 1y
From (2) [XH']"= L — 3)
y¢
KIXH 1y,
(3)in (1) rate:k2 od Wor (4)
y¢
[XH"1y
[XI[H 1y, v

From the pre equilibriurk,, =

yx[x]a'H*Keq

XH*

[XHT]="2—H = (5)
kk'k y[Xla y
Substitute (5) in (4) ) =2« g gt

XH*

kk k ya

y=re X

Self-Instructional Matetrial

For a first order rate, k=r /[s]
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kk k ya
XH

k = 2egeq
y¢
[S]=[X]
Taking natural logarithm for the above
logk = logk k k +Iogyxa“+ ......... (6)
2 eq eq y¢
logk = logk k k —H --------- (7)

2 eq eq 0

Ho is acidity function. The equation shows that a eation will exist
between log k and 4 reaction mechanism involving pre-equilibrium.This
same mechanism tentatively modified by ‘Zucker mcluding water
(solvent) in the slow process as follows

K K

X+H* o XH" o[ XH*]" - product Slow/H:0

follow the derivation equation (6) becomes,

logk = logk k k +Iogyxa“+aH2°
2 eq eq T

The suggestion was that it might be possible tadéebetween the two
mechanism by seeing whether the rate constant shdeter correlation
with p™ or with Hy. Unfortunately this Hammett-Zucker hypothesis did no
prove reliable.

14.6 ENZYME CATALYSIS

Enzymes are proteins with high molecular mass @0t0000 or even
more they are derived from living organism.

Enzyme catalysed reactions are specific in nature.
CH O 1 9™, 2EtOH + 2CO
6 12 6 2

urea 1 “13°°, 2NH, + CO,

Mechanism and kinetics of enzyme catalysed reaction
Ky
E+S , ES
K-1

[E] Lo P+S

E= enzyme, s =substrate
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Apply steady state approximation for [ES].
KJ[EIS -K,[E] -K[E] =0--------- (1)
[ESK.,+K,=K[E][§
KLi+K,
[E] = [Ed]-[ES]
[E]=Equilibrium constant
Substitute in equation, #KS][(Eo)-(ES)]=K1[ES]-KZ[ES]

[E]=_ KiSI[E] Rate of the reaction=k [E]
K.+ K; + K [S] ?

= K KJ[S[E] NG

Divide the equation (3) by:k
KiS + K, +K;

r=_KJ[&]S]

[S]+ K+ 1

O 1 | (5)
[9 + K,

where km = k+ko/k1 --- Michaelis constant. This rate equation is
known as Michaelis —Menton equation.

At very high concentration of substrate the ratk v
maximum.

From equation (5) km<<[S]

;= KB I[S] r = KlBIlS]
[S] +K, B ]
Mo = Ko[ Eg] ------- (6)
Substitute (6) in (5)
KBNS yeadS] o
[S] +K, [S]+K,

Limiting cases
Case (i)
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When km >> [s]

_ VowdS]

K

=k

m

Reaction is first order with respect to [s].
Case (i)

[s]>>km, r= Yax[S| _ K., =constant

[s]
Case (iii)
fS=kn, ,=Vmalsl_1
r 2[s] 2 L

When we plot a graphdds defined as concentration of substrate at which
the rate of formation of product is half the maximtate at high concentration

of substrate.

Why the rate of enzyme catalyst reaction changesdm first order to
zero order as the concentration of [s] increases?

Each enzyme molecule has one or more active ditgbieh the substrate
must be adsorbed in order that catalytic actiontrosur.

At low [s]

As the [s] increases the number of sites whicloaceipied increases and the
rate also increases.

At high [s]
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All the active sites are already occupied and tinthér increase
[s] can not further increase in rate and become aster. It i
very difficult to determine th@maxand Knfrom the ploty vs [S]

(i) Line Weaver-Burk Method:

r= Y max[S]
[S]+Kn

Int I /X/' Imt
K. //// \
N |
g WP A
r Vimax[S]
1 :i+_k““_ Plot between 1/r vs 1/[s]
r ymx ymax[g

14.7 EFFECT OF pH AND TEMPERATURE ON ENZYME
CATALYZED REACTIONS

Influence of pH

The pH of the solution usually has a very markddotfon the
rate of an enzyme reaction. In most cases the te=nzyme
reaction passes through a maximum as the pH igdafihe pF
corresponding t¢the maximum rate is known as optimum pH.
value varies with the nature of substrate and i substrat
concentration.

Effects of pH are irreversible if the acidity ordoaty become
too high, since the ternary substance of the proteidestroyec
Reversible pH changes occur when the pH is nontabe far from
the pH optimun

With in a certain pH range the pH can kthanged back ar
forth without any permanent affe ensuring.

This behaviour was first explained by Michaelisptustulate a
least two ionizing groups as playing an importaié at the activi
centre, these groups eNH3" and -COOH, the ionization
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active centre may be represente

NH,

COOH NHj CcOoO NH; COO~
\ / / \
r;_:ii,;’w r_ i F\—JL
| Enzyme \ _— ‘ Enzyme | _ Enzyme |
L 1 L I | t J
(EH;) (EH) (E)
— Low pH High pH —

The pH behaviour can be explained by postulatiray the intermediate
Zwitter ion, form is enzymatically active, but thidite species to left ar
right are inactive. The concentration of intermégliggoes through

maximum as the pH is varied so that rate passes through a maximum.

Rate

Mechanism:

Applying steady state approximation for the abowz@anism

At low substrate concentrati
EJKA[S]

r =
Kmi|1+ﬁ +10 1
\ H Ky) |
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If we study the reaction at low pI—% is very high.
b

Equation (1) becomes, r = ﬂl:?,l'[-g; ------ (2)
NOTE K| |

Ky

Kk [E][S
= - ©

Unit — 14
Acid Base catalysis

Taking log for equation (3)
log r = constant — log[H
logr =Const + pH is at low pH

(i) At intermediate P the kavalue cannot be neglected from
equation (1)

_KIEIS] |

m

--- (4) pH has no effect on rate

(i) At high pH value the termakd" is large in equation (1)

= / KZ[.EO][Sr1.+1\
K l| 1+&+“_I ] |

"l

2 KIEJS] - (4a)

K 2
mH+

log r = Constant + logH

log r = Constant — pH- (5)

Self-Instructional Matefial b il e




In the graph AB has +ve slope satisfy the egn (3a)
BC is by equation (4)

CD is by equation (5)

At point B the eqgn (3a) and (4) are equal

KIEI[S] _ kIEI[S]
KmHJr K

[H] =Ko
pH = Pk
At point ‘C’ the equation (4) and (4a) are equal
K[E][S] KI[EISI[H"]
2 0 - 2 0
Km Kmka
[H]=Ka, P =pKa

14.8 INFLUENCE OF TEMPERATURE

At temperatures of 36 or higher the enzyme may undergo

Rapid deactivation during the course of a kinexigegiment and then low rate
of transformation of a substrate is observed.

Generally the rates of enzyme catalyzed reacti@guiently pass
through a maximum as the temperature is raisedtdrperature at which the
rate is maximum often referred to as the maximumperature (optimum
temperature).

At low temperature no appreciable inactivation e@scor by making
correction for the inactivation, it is possible tetermine the effect of
temperature on enzyme catalyzed reaction itself.

- KIEIS]
[s] + Ko,
(i) At high concentration of [s]
r = kz[Eq]

K,=AeRT, Int =Ink,+ In E,

Inr =1In AEO—E

RT
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High the energy of activation lower the rate

(ii) At low concentration of substrate

r:ﬁE][S]
k 0

m

Kik,
Kotk

r =

[E[S]

If k-1>>K>

r="E)s)

-1

The energy of activation is now equal totEH=>—E 1.

14.9 Check Your Progress

1. What is meant by Acid base catalyst?
2. Explain PH effect.

14.10 Answers To Check Your Progress Questions

1. In acid-base catalysis, the chemical reaction ¢elacated by the
addition of an acid or a base, and the acid or lissdf is not
consumed in the reaction. ... Proton donors aneors,

i.e. acids and base may donate and accept protorwder to
stabilize developing charges in the transitionestat

2. Enzymes are affected by changes in pH. Thweost
favorable pH value - the point where the enzymmast active - is
known as the optimum pH. This is graphically ilhaséd in Figure
14. Extremely high or low pH values generally résalcomplete
loss of activity for most enzymes

e §H

14.11 Summary

. General catalysis is indicated when
the rate of the reaction depends upon the condemtraf the
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buffer as well as the pH of the solution it is mos' likely to be observe wher
the pH of the solution is near the pKa of the byféad the reaction
mechanism involves proton transfer in the rate+dateng step.

The PH effect causes polydentate complexes todyentsdynamically more
stable than their monodentate counterpart

14.12  Keywords

Acid base catalystsIn acid-base catalysi, the chemical reaction is
accelerated by the addition of acid or abase and theacid or baseitself is
not consumed in the reaction..... Proton donodsaaaeptors,
i.e.acidsandbasemay donate and accept protons in order to stabilize
developing charges in the transition state

PH pH is a measure of hydrogen ion concentration, a nmeastthe acidity
or alkalinity of a solution. ThpH scale usually ranges from 0 to 14.

Unit— 14
Acid Base catalysis

NOTE

Aqueous solutions at 25°C withpdd less than 7 are acidic, while those wjth

apH greater than 7 are basic or alkaline PH

14.13  Self-assessment questions and exercises

1. Discuss the influence of pH and temperature on raezgatalyzed
reactions.

2.Discuss the effect of subsistent on reaction riatésrms of Hammett
equation and Taft equation

3. Discuss the effect of ionic strength on reactidesa

14.14 Further readings
. Shriver and Atkins., Physical Chemistry, 5th ed.:NVFreeman and
Company New Yorl
. C.M. Guldberg and P. Waage,"Studies Concerningh{fi Forhandlinger i
Videnskabs-Selskabet i Christiariie864), 35
. P. Waage, "Experiments for Determining the Affiniigw" Forhandlinger i
Videnskabs-Selskabet i Christian{a864) 92.
. C.M. Guldberg, "Concerning the Laws of Chemical
Affinity”, Forhandlinger i Videnskabs-Selskabet i Christia(ii864) 111

223

Self-Instructional Material



ALAGAPPA UNIVERSITY DISTANCE EDUCATION
Unit — 14 M.Sc. Degree Examination
Acid Base catalysis Advanced Physical chemistry (CBCS 2018 — 19 Academar onwards)
Time: Three hours Maximun?5 marks

NOTE SECTION A Answer All Questions
(10 X2 = 20)
1) What is simple definition of entropy?
2) How is vibrational partition function calculated?
3) What is difference between Fermi Dirac and Bos¢ekistatistics?
4) Write the wave equation formula.
5) Explain the paulis exclusion principle.
6) Give the two application of HMO method.
7) Define point group.
8) Define the reducible and irreducible representation
9) What is difference between primary and seconddtyeffact.
10) Mention the acid base catalysis.
SECTION B Answer ALL questions, choosing either (apr (b)
(5x5=25)
1 (a)Write the short notes on negative absolute testyre.
(or)
(b) Mention the equilibrium constant from partitiimction.
2 (a) Define the approximation and variation methafctguantum
mechanical treatments.
(or)

(b) How will you find out the Bose Eistein Distrition law?

Self-Instructional Mgterial
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13. (a) Write the short notes on HMO methods.
(or)
(b) What are character table of C2V and C3 V pginups.

14. (a)Write the applications of group theory of electmspectra.

(or)

(b) What are the factors affected in reaction cditeolutions?

15. (a) Mention the Hammett and Taft equations.
(or)
(b) What is bronsted relation of acid-base catalysactions?

SECTION C Answer any THREE questions(3 x 10 = 30)
16) How is Boltzmann distribution calculated?
17) How do solve the one dimensional wave equation?
18) (a) predict the IR and NMR spectra of®and NH molecules.

(b) Define point groups, and mention the classiforaof point
groups.

19) Explain the Bronsted Bjerrum equation.
20) Explain the following

a. Zuker Hammet equation

b. Michaelis Menton Equation

c. Lineweaver-Burke Equation.
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