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BLOCK – I: 
STATISTICAL THERMODYNAMICS 
Unit-1: Statistical thermodynamics 
Structure 
1.0 Introduction 
1.1 Objectives 
1.2 Maxwell – Boltzmann Distribution 
1.2.1 Maximization of thermodynamic probability 
1.2.2 Application of Maxwell – Boltzmann law 
1.2.3 When the energy levels are degenerate 
1.3 Negative Kelvin Temperature 
1.4 Check Your Progress 
1.5 Answers to check your progress questions 
1.6 Summary 
1.7 Keywords 
1.8 Self-assessment questions and exercises 
1.9 Further readings 

 
 

1.0 Introduction 
In thermodynamics, statistical thermodynamics is the study of the 

microscopic behaviors of thermodynamic systems using probability theory. 
Statistical thermodynamics, generally, provides a molecular level 
interpretation of thermodynamic quantities such as work, heat, free energy, 
and entropy. Statistical thermodynamics was born in 1870 with the work of 
Austrain physicist Ludwig Boltzmann, much of which was collectively 
published in Boltzmann's 1896 Lectures on Gas Theory. 

1.1 Objectives 
After going through this unit, you will be able to: 

• Understand about the statistical thermodynamics 
• Understand the Microscopic behaviour of thermodynamic system 

using probability theory. 
• Explain the concept of Negative Kelvin Temperature 
• Explains the microstates and configuration 

 
1.2 Maxwell – Boltzmann Distribution 
Postulates: 

1. The system considered is an isolated system of independent, non 
interacting identical particles without spin in equilibrium at a 
definite temperature. 

2. The particles are distinguishable 
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NOTE 

3. There is no restriction to the number of particles 

which may occupy any given quantum state. Let us consider 

any ideal gas containing N identical distinguishable 

independent particles. let at any instant 

no particle have energy Eo 

n1  particles have energy E1 

. 

. 

. 

ni  particles have energy Ei 

 
 

Total number of particles in the system is 

no +n1 +n2 + n3+ ----------ni + --- =N 

 
 

 

∑ni  = N 
i =0 

 
 
 
Total number of particles in the system is assumed to 

be constant and hence 
 
 
 

 

∑∂ni  = 0 
i =0 

 
→ (1) 

 

 
This is the first condition of constraint. 

 
 

4. Total energy possessed by all the molecules E is 

E = E0n0  + E1n1  + + Eini  + = ∑ Eini 
i =0 

 

5. Total energy is constant and hence ∂E = 0 
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i
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∞

 

 

∑ Ei∂ni = 0 → (2) 
i =0 
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This is the second condition of constraint. 

6. he system is considered at statistical equilibrium and hence 
thermodynamic probability will be maximum. 

 

 
 

1.2.1 Maximization of thermodynamic probability 
 

For Non - degenerate energy levels: 
 

The probability of distribution of particles among the quantum states is 
proportional to the number of different ways in which the molecules can be 
arranged under the specified conditions. The number of ways in which ‘N’ 
distinguishable particles can be arranged in different energy levels such that no 

particles are in the ground state , n, in the 1st , n2 in the 2nd and so is given by 

NOTE 

 
 
 
 

W = 
N! × cons tan t 

πni! 
i =0 

 

∞ 

ln W = ln N!−ln( π n !) + cons tan t 
i =0 

 

Applying stirlings approximation formula 
 

 

ln N!= N ln N − N 
 

ln W = N ln N − N − ∑ln( ni!) + cons tan t 
i =0 

 

= N ln N − N − ∑ (ni  ln ni  − ni ) + cons tan t 
i =0 

 

∞ ∞ 

= N ln N − N − ∑ni  ln ni  + ∑ni  + cons tan t 
i =0 i =0 
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NOTE 

When the system attains statistical equilibrium there will be 
most probable distribution and thermodynamic probability will 
be maximum and hence variation in W 

i. ∂ω or ∂lnω is zero. 
∂lnω =0 

 
 

∂ ln ω = ∂(N ln N ) − ∂(∑ni  ln ni ) +cons tan t 
i =0 

 

= 0 − ∑(n .
 1 + ln n )∂n = 0 

 i i  
i=0 i 

 
 

= − ∑ln( ni )∂ni = 0 
i =0 

 

(or) 

 

∑∂ni  = 0 
i =0 

 
 

 

∑ln( ni )∂ni = 0 → (3) 
i =0 

 

 

This is the 3rd condition of constraint. For a system of maximum 
thermodynamic probability and for a stem in statistical equilibrium 
condition 1, 2&3 must be satisfied. 

 
 

When there are more than two conditions, lagrangian method of 
undetermined multiplers is used to solve the problem. 

Equation (1) is multiplied by α, equation (2) is multiplied by β and 
combined with equation (3) we get 

 
∞ ∞ ∞ 

α ∑∂ni  + β ∑ Ei∂ni  + ∑ ln( ni )∂ni   = 0 
i =0 i =0 i =0 

 
 

∑(α + βEi + ln ni )∂ni = 0 
i =0 
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Since, the variations ∂n1, ∂n2, ∂n3 etc are independent of each other, 
provided the conditions (1) & (2) are satisfied, the co- efficient of ∂n1’s 
must be zero and ∂ni≠0 

∞

∞ 

∞∞

i

∞
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ln ni = −α − βEi NOTE 
 
 

n = e−α − βEi 
(α = 

− µ 
, β =

 1 
) 

i 
 
 

n  = ce−βEi
 

RT KT 

= e+ µ RT .e− Ei KT 

 
 
 

The factor 
 
e− Ei KT 

 
is called Boltzmann factor and R is the Boltzmann 

constant, the expression 

n  = e−α .e−βEi     = exp(−α ) .exp(−βEi ) is called Maxwell – Boltzmann 

distribution law for the system having N distinguishable particles 
distributed in non degenerated energy levels. 

The total energy or any individual form of energy is given as 

E(Total) = Eelec +Evib+ Erot + Etrans 

 
 
 

1.2.2 When the energy levels are degenerate 
 

The number of ways in which ‘N’ distinguishable particles can be 
arranged in different energy levels having the degeneracy go, n, in the first 
state having the degeneracy g1, n2 in the 3rd having the degeneracy g2 and 
so on i.e. given by 

 
∞ 

W = N!π g 
i =0 

ni × cons tan t 
ni! 

 

∞ 

ln W = ln( N!π g 
i =0 

ni × cons tan t) 
ni! 

 
 

 = ln N!+ ln ∞  g ni    − ln 
 

∞ n !×cons tan t π 
i =0 

π 
i =0 

 

∞ ∞ 

= ln N!+∑ni  ln gi  − ∑ ln ni! + cons tan t 
i =0 
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Applying Stirlings approximation Formula for evaluation 

of factorials of large number we get 

 
NOTE ln N!= N ln N − N 

 
 
 
 

∞ ∞ 

ln W = N ln N − N + ∑ ni  ln gi  − ∑ (ni  ln ni  − ni ) + cons tan t 
i =0 i =0 

 
 
 
 

∞ ∞ ∞ 

= N ln N − N + ∑ni  ln gi  − ∑ni  ln ni  + ∑ni  + cons tan t 
i =0 i =0 i =0 

 

∞ ∞ 

= N ln N + ∑ni  ln gi  − ∑ni  ln ni  + cons tan t 
i =0 i =0 

 

When the system attains statistical equilibrium there will be 
most probable distribution and thermodynamic probability will 
be maximum, i.e. variation in law will be zero. 

∂W = 0 

(or) ∂ln W = 0 
 

∞ ∞ 

∂ ln W  = ∂N ln N + ∂∑ni  ln gi  − ∂∑ni  ln ni  + ∂(cons tan t) = 0 
i =0 i =0 

 

∞ ∞ 

= 0 + ∑ln gi∂ni − ∑(1 + ln ni )∂ni + 0 = 0 
i =0 i =0 

 
 
 

∞ ∞ 

= ∑ln gi∂ni − ∑ln ni∂ni = 0 
i =0 i =0 

 
 
 
 

= ∑ln( gi 
i=0 

ni )∂ni = 0 
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∞ ∞

i

 

 

− ∑ln( gi  
i =0 

ni )∂ni = 0 → (3) Unit -1 Statistical 
Thermodynamics 

This is the 3rd condition of constraint 

For a system of maximum thermodynamic probability and for a 
system in statistical equilibrium conditions 1, 2 & 3 must be satisfied 

 
 

When there are more than two conditions Lagrange’s methods of 
undetermined multipliers is used to solve the problem. 

Equation (1) is multiplied by α, equation (2) by β & combined with equation 
(3) 

 
NOTE 

α ∑∂n + β ∑E ∂n − ∑ ln( 
gi )∂n = 0 

 

 i 
i =0 

i i 
i =0 i =0 ni 

 
 

 

∑(α + βEi − ln( gi 
i =0 

ni )∂ni = 0 

 

 
Since the variations ∂n1, ∂n2, ∂n3 etc are independent of each other, provided 
the conditions 1 &3 are satisfied the coefficient of ∂ni’s must be equal to zero. 
∂ni ≠0. 

α + βEi  − ln( gi   ni ) = 0 
 

 

ln( gi  ni ) = α + βEi 

 

 

gi ni = eα + βEi  

 

 

n = 
gi

 = g e−α − βEi (α = 
− µ 

, β =
 1 

) 
i eα + βEi i RT KT 

= g e+ µ RT .e− Ei KT 

 
 
 

Where, gi is the degree of degeneracy or statistical weight factor 
for the ith level. This expression is called Maxwell Boltzmann 
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NOTE 

distribution law. It gives the number of particles in the ith level 
with degeneracy gi having energy Ei and 

 
 
 

Ei(Total) = Eelec +Evib+ Erot + Etrans 
 
 
 
 

1.3 Negative Kelvin Temperature 
 

According to Maxwell Boltzmann statistics the equilibrium 
population of two levels is given by 

ni    = e−Ei   KT 

n0 
 

Where ni is the number of particles in the upper ith level and no is  
the number of particles in the lowest level at temperature T and Ei is 
the energy of the ith level in excess of zero point level. At T = 0 
ni/no=0 that is all the molecules will be in the ground state as T→∞ 
ni/no =1 and the population of the states will be equal. 

In general in any system at statistical equilibrium the higher 
level will be occupied by lesser number of particles than the lower 
ones or will be equally occupied. To reverse the population ratios 
and have higher level more occupied than the lower levels, 
temperatures even higher than infinity are needed. A population 
ratio larger than one would require T<o or negative. This 
temperature at which population inversion occurs is called negative 
absolute temperature. This temperature must be beyond infinity. 

To understand the phenomenon of negative absolute temperature, 
consider a system of ‘N’ particles existing only in two energy 
levels. i.e in zero and 1st level. The entropy ‘S’ when plotted as a 
function of energy the following curve is obtained. 
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At zero energy all the ‘N’ particles are in the zero level (lowest) which the 
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NOTE 

state of minimum disorder to minimum entropy is ( 
∂S 

) 
 

= 1 T 
∂E V , N 

 

As the temperature is increased or energy is supplied to the system 
population in the upper level increases. When the two energy levels are 
equally populated the internal energy of the system will correspond to 
NE/2. There is maximum disorder and maximum entropy. It is the most 
probable state and ∂S/∂E =1/T =0 as T→∞ or more energy is supplied all 
the ‘N ‘particles will be in the upper level. E=NE. This is a state of 
maximum energy and minimum entropy with minimum disorder. The left 

half of the curve has a positive slope i.e ( 
∂S 

)
 

∂E 
= 1 T is positive that is T is 

+ve. The right half of the curve as negative slope ie ( 
∂S 

) = 1 T = -ve that 
∂E 

is T= -ve. This is the region of negative absolute temperature. Negative 
absolute temperatures are defined by the slope of S vs E curves. 

 
 

In the figure as we proceed from left to right in the direction of 
increasing energy there is increasing hotness and therefore increase in 
entropy. At the position of maximum entropy where both the energy levels 
are equally populated, the temperature is infinite. Beyond the maximum the 
temperature must be hotter than infinity. Hence negative absolute 
temperatures are hotter than infinity. 

 
 
 
 

1.4 Check Your Progress 
 

1. What is meant by statistical therrmodynamics? 
2. Write the Maxwell – Boltzmann distribution law for the system having 
N distinguishable particles distributed in non degenerated energy levels. 
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3. Give the expression for Maxwell distribution law of 
molecular energies. 
4. What are the relative populations of the states of a two-level 
system when the temperature is infinite? 
5. What are the relative populations of the states of a two-level 
system as 
the temperature approaches zero? 

 
 
 
 
 
 
 

 
1.5 Answers to Check Your Progress Questions 

 

1. Statistical thermodynamics is the study of the microscopic 
behaviors of thermodynamic systems using probability theory. 
Statistical thermodynamics, generally, provides a molecular 
level   interpretation   of   thermodynamic    quantities    such    
as work, heat, free energy, and entropy. 

2. ni = e−α .e− βEi = exp(−α ) .exp(−βEi ) is called Maxwell – 

Boltzmann distribution law for the system having N 
distinguishable particles distributed in non degenerated energy 
levels. 

3. n = 
gi 

 
= g e−α − βEi  (α = 

− µ 
, β =

 1 
) 

 

i eα + βEi i RT KT 
 

= g e+ µ RT .e− Ei KT 
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Where, gi is the degree of degeneracy or statistical weight factor 
for the ith level. This expression is called Maxwell Boltzmann 
distribution law. 

4. All the molecules will be in the ground state as T→∞ ni/no =1 
and the population of the states will be equal. 

5. At T = 0 ni/no=0. 
 

 

1.6 Summary 
 

• In thermodynamics, statistical thermodynamics is the 
study of the  microscopic  behaviors  of thermodynamic  
systems using probability theory. Statistical thermodynamics, 
generally, provides a molecular level interpretation of 
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thermodynamic  quantities  such  as work, heat, free  energy,  
and entropy 
• Maxwell–Boltzmann statistics gives the average 
number of particles found in a given single-particle microstate. 
• The energies of such particles follow  what is  known  
as Maxwell-Boltzmann statistics, and the 
statistical distribution of speeds is derived by equating particle 
energies with kinetic energy. 
• One very important conclusion that will emerge from 
the following analysis is that the populations of states depend on 
a single parameter, the ‘temperature’. That is, statistical 
thermodynamics provides a molecular justification for the 
concept of temperature and some insight into this crucially 
important quantity. 

 
 

1.7 Keywords 
1. . Statistical thermodynamics is the study of the microscopic 
behaviors of thermodynamic systems using probability theory. 
2. The weight of a configuration is the number of ways that molecules 
can be distributed over the available states. 
3. The most probable distribution, that of the greatest weight, is the 
Boltzmann distribution. 

 
 

1.8 Self-assessment questions and exercises 
1. Derive Maxwell distribution law of molecular energies. 
2. Explain Negative Kelvin Temperature. 

 
 

1.9 Further readings 
1. Statistical Thermodynamics, M.C. Gupta, Wiley Eastern, New 
Delhi,1990. 

 
2. Introduction to Statistical Thermodynamics, R.P.H.Gasser and 
W.G.Richards, World Scientific, Singapore, 1995. 

 
 

3. Physical chemistry, Peter Atkins, Julio De Paula, 9th edition, 2010. 
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2.0 Introduction 
 

In physics,a partition function describes the statistical properties of a 
system in thermodynamic equilibrium. Partition functions are functions of 
the thermodynamic state variables, such as the temperature and volume. 
Most of the aggregate thermodynamic variables of the  system,  such  as 
the total energy, free energy, entropy, and pressure, can be expressed in 
terms of the partition function or its derivatives. The partition function is 
dimensionless, it is a pure number. 

Each partition function  is  constructed  to  represent  a 
particular statistical ensemble (which, in turn, corresponds to a 
particular free energy). The most common statistical ensembles 
have named partition functions. The canonical partition 
function applies to a canonical ensemble, in which the system is 
allowed to exchange heat with the environment at fixed 
temperature, volume, and number of particles. The grand 
canonical partition function applies to a grand canonical 
ensemble, in which the system can exchange both heat and 
particles with the environment, at fixed temperature, volume, 
and chemical potential. A a thermodynamically large system is 
in thermal contact with the environment, with a temperature T, 
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and both the volume of the system and the number of 
constituent particles are fixed. A collection of this kind of 
systems comprises an ensemble called a canonical ensemble. 

 
2.1 Objectives 
After going through this unit, you will be able to: 

• Understand the concept behind Partition function 
• Learn about how many Microstates are accessible to your system in a 

given ensembles 
• Explains the thermodynamic functions in terms of partition function 
• The physical basis of equilibrium can be understood by using the 

principles of statistical thermodynamics. 

2.2 Partition Function 
Quantum theory permits a qualitative explanation of energy, heat capacity 
and other related thermodynamic quantities for di and polyatomic molecules. 
A quantitative interpretation is provided by the use of certain general 
function is called “partition function”. Mathematically it was written as 
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q = ∑ gie 
i=0 

− Ei 
KT 

 
 

Where ‘q’ is the molecular partition function 

Partition function is derived from Maxwell Boltzmann distribution law. 
According to Maxwell Boltzmann distribution law 

n = n0 g e 
 

− E 0 
KT 

i i  
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Total number of molecules = N = ∑ni 
i =0 

 

 
N= no +n1 +n2 + n3+ -------ni + --- 
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− E0 
KT   + g e

− E1 
KT   + g e

− E2 
KT   + ...............g e

− Ei 
KT .......... ] 

 

 
Unit – 2 
Partition Function 

 

NOTE 

0 1 2 
0 

 
 
 
 
 

N = 

 
 
 
 

∑ gie 
0 i=0 

i 
 
 
 
 
 

−Ei  

KT 

 
 

 
Where 

 
 

∑ gie 
i =0 

 
− Ei 

 
KT is called “partition function”. The summation is 

taken over all integral values of ’i’ from zero to infinity. It is 
represented by the letter q or z 

 

 
 

q = ∑ gie 
i=0 

− Ei 

KT 

 

N = 
n0 .q 
g0 

q = g 
N

 
0 

when g0=1,  q = 
N

 
n0 

 
 

i.e partition function is the ratio of the total number of molecules in 
the ground state. Again 

 
q = g0 when g0=1, q = 

1
 

 
 

 

Partition function is the reciprocal of the mole fraction of the 
molecules in the ground state. It is a mere number and is a 
dimensionless quantity. 

 

 

q = ∑ gie 
i=0 

− Ei 

KT 

 

Partition function will never be equal to zero. It may vary from 
unity to infinity. As T→0 q→1(Eo=0). 
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2.2.1 Vibrational Partition Function 
Partition function is defined mathematically as 
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q = ∑ gie 
i=0 

 

Vibrational partition function is given by 

− Ei 

KT 

 
 
 

qv = ∑ gve 
v =0 

 
− Ev 

KT 

 

Where gv is the degeneracy factor associated with the vibrational level. It is 
unity and Evib is the energy of the vibrational state in excess of the zero point 
energy. 

The lowest or ground state energy or zero point energy of simple 

harmonic oscillators is given by 

frequency of oscillation. 

E = 0 = 
1 

hν ; where ‘v’ is the fundamental 
v 2 

ν = Where  K  is  the  force  constant  and --- the 

reduced mass of the system. 

The actual value of energy of vibration is given by the expression 

Evib 
= (V + 

1 
)hν 

2 

Where, V is the vibrational quantum number. It can take up value from 0 to 
∞ and h is the Planck’s constant for v=0, E  = 0 = 

1 
hν   which is the zero 

 

v 2 

point energy of the vibrator. Hence energy of the vibrational states in excess 
of the zero point energy is 

E = (V + 
1 

)hν − 
1 

hν = Vhv 
  

 
 

(gv=1) 
v 2 2 
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1− e−hv KT 

(1 − e−hv KT ) 
− 

(1 − e−hcv KT ) 

e−hv 2KT 

1− (e−hv KT ) 
e+hv 2KT 

ehv KT −1 

vib

∞ −Ev ∞ −vhv 
 

 

qv = ∑ gve KT = ∑e KT 
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v=0 v=0 

 

= e−0hv KT + e−hv KT + e−2hv KT + e−3hv KT + ............. 

 

NOTE  
eo = 0 

 
 
 

put hv 

 
 

KT = x = 1+ e−x + e−2x + e−3x +........... 
 

q = 
1 = 

1 = 
vib 1− e− x 

 

The series 1+ e−x + e−2x + e−3x + converges to 
 

1 = 
1 − e−x 1 − 

1 
= 

ex 

= 
e+x −1 

ex 
 

 

ex −1 

 

qvib = 

e+ x 

1 = 
1 

 
 
 

− 

v = wave number of oscillation when zero point energy is also 
included. 

 
 
 

qvib = = 
 
 
 

This expression is used to determine the vibrational partition 
function of a diatomic molecule at all temperatures provided the 
vibrational frequency is known. Vibrational frequency is obtained 
from the study of the spectrum of the molecule. 

If θv = hv K , the vibrational characteristic temperature, 
 

q = 1 1− e−θv   T 

 
 

1. Greater the value of θv (θv = hv 
 
K ) i.e. higher the value 

Self-Instructional Material of the vibrational frequency lower will be the vibrational 
partition function and lesser will be the fraction of the 

ehv KT 

e(hv KT ) −1 

1
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molecules in the excited vibrational states. 
2. Greater the value of greater T will be the value of vibrational partition 
function. 

 
2.2.2 Rotational Partition Function 

Partition function is given by the expression 
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For rotational part of the partition function 
 

 

qr = ∑ gJ 
J =0 

e−EJ    KT 

 

where gJ is the degeneracy factor or statistical weight factor for the rotational 
levels and is equal to (2J +1) where J is the rotational quantum number. Ej is 
the energy of the rotational level in excess of the zero point value. 

Rotational energy of the rigid diatomic molecule is obtained by 
solving the schrodinger wave equation. 

J (J +1)h2 
EJ = 

8π 2I 
; Where J is the rotational quantum number. J can taken up 

values from 0 to ∞ when J = 0 EJ =0 
 
 

‘h’ is the Planck’s, constant and I the moment of inertia I =µr2 where µ is the 
reduced mass of the system and r, internuclear distance . Greater the value of 
‘I’ lesser will be the value of EJ 

Inserting the value of EJ in the expression for partition function, we get 
 
 

 

qr = ∑(2J +1)e 
J =0 

− J (J +1)h2 
 

 

8π 2IKT 
 

 
Provided moment of inertia is moderately large and the temperature not too 
low for all diatomic molecules except H2 and D2 the summation is replaced 
by integration and hence 
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qr = ∑(2J +1)e 
J =0 

 
 
 

h2 

− J (J +1)h2 
 

 

8π 2IKT 

NOTE 
Assume 

8π 2 IK
 

temperature 

= θr where θr is called rotational characteristic 

 
Put 

J (J +1)h2 
x = 

8π 2IKT 
= J (J +1)θr  

T 
 

 

x. 
T

 
θr  

= J (J +1) 

 

T 
.dx = (2J +1)dJ 

θr 

Hence, 
 

∞ T 
qr = 

0 r 

 
.e
− 

 
xdx 

 

∞ 

qr  = .∫ 
r    0 

 
e−xdx 

 

q = 
T 

.1 
r θ 

r 
 

 
qr  = 

h2 

 
= 

8π 2IKT 
h2 

 
 

8π 2IK 
 

 
For heteronuclear diatomics 

8π 2IKT 
qr  = 

h2 
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For symmetric molecules (like homonuclear diatomic molecule) 
a factor called symmetry factor represented by the letter σ is 
introduced in the denominator. Hence in general for all diatomic 
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The symmetry factor σ is the number of a identical indistinguishable 
configurations a molecule can assume during one complete rotation. 

For homonuclear diatomic molecule like H2O2, N2, Cl2 etc σ =2, for 

heteronuclear diatomic molecules like HCl, ICl, CO, NO etc. 

σ =1. For linear molecules like CO2 σ = 2 
 

Interpretation 
 

qr = 

 
 
8π 2IKT 

 
 

σh2 

1. qr is independent of the volume of the container 
2. qr depends on the symmetry of the molecule, greater the symmetry 
of the molecule lesser will be the rotational partition function. 
3. qr depends on the moment of inertia and temperature. It is directly 
proportional to I and T. 

 
 
 
 

 
2.2.3 Elecronic Partition function 

 

 

Partition function may be defined mathematically as 
 
 
 

q = ∑ gie 
i=0 

 
− Ei 

KT 

 
 
 

 

Where, gi  is the degeneracy factor for the ith level having energy Ei  
in excess of the zero point level at temperature T. 
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The electronic partition is given by 
 

 
Unit – 2 
Partition Function 

 

 

qe  = ∑ (ge )ie 
i=0 

−( Ee )i 

KT 

 

NOTE  
qe = (ge )0 e 

 

−( Ee )o 
 
KT + (ge )1 e 

 

−( Ee )1 
 
KT + (ge )2 e 

 

−( Ee ) 2 
 
KT + ................... 

 

qe = (ge )0 e 
−( Ee )0 

KT (1+ (ge )1 

(ge )0 

−( Ee1 −Ee0 ) 

e KT + (ge )2 

(ge )0 

−( Ee2 −Ee0 ) 

e KT  + ) 

 
 
 

The energy spacings of the electronic energy levels are very large 
compared to those of vibrational and rotational levels. For most 
atoms except chlorine and molecules except O2, NO and NO2 the 
energy of the next higher electronic state is much greater than εe0 

so that (
εe1 − εe0 ) is very large at moderate temperatures. 

KT 

Hence second and other terms can be neglected and hence the 
electronic partition function 

−( Ee )0 

qe = (ge )0 e KT 

 
 

The degeneracy or statistical weight factor for the electronic level 
normal or excited is (2J +1) 

 

 
In general 

 

 

qe  = ∑(ge )ie 
ei=0 

−( Ee )i 

KT 

 

 
In the ground state (Ee)o is zero. Hence 

−( Ee )0 

e KT = 1. The 
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contribution of this state to the electronic partition function is thus 
(2J +1). 

He, Ne, Na vapour, Hg etc have single electronic ground state 
and for the atoms of these elements the energy difference between 
the lowest and the next electronic level is very high. 

Many monoatomic substances e.g. Cl2 and a few 
polyatomic molecules e.g.O2, NO have multiplet electronic 
ground states and there may be low lying excited electronic states. 

∞
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Hence one or more electronic states above the ground state are 
appreciably occupied even at moderate temperatures and hence 
appropriate terms must be included in the partition function. 

 
 

Example: the lowest state of chlorine atom having the energy (Ee)o = 
zero , the value of j is 3/2 and there is another state energy (Ee)1 = E1 with J 
value ½ . Hence the electronic partition function qe at ordinary temperature. 
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qe = ∑ geie 
ei=0 

−( Ee )i 

KT 

 

 
 

(ge )0 

−( Ee )0 −( Ee )1 

qe  = (ge )0 e KT  + (ge )1 e KT 

= (2J +1) = (2 × 
3 

+1) = 4 
2 

J = 3 2 
 

(ge )1 = (2J +1) = (2 × 
1 

+1) = 2 
2 

J = 1 2 

(Ee )0 = 0 , (Ee )1 = E1 

q  = 4 + 2e−E1   KT
 

where, E1 is the energy of the upper level in excess of the zero point level. 

At higher temperatures other terms would have to be included. 

The value of E1 = hν is found from the spectrum of chlorine. Thus 

(q ) = 4 + 2e−hv KT 

− 

= 4 + 2e−hcv KT 

 
 
 

Internal energy with respect to electronic motion 
 

(Ee) = NKT 2 ( 
∂ ln qe ) 

Cl ∂T 
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2ehcv KT +1 

∞

∞= i =0 → 1 

= 2    ∂ −    
−
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∂T 

− 

Partition Function 
 

NOTE 

= R.( 
hc v 

). 
1
 

K 

= ( 
∂(Ee )Cl )

 
 

 
= 

∂ 
(R(hcv 

∂T 

∂T V 

R). 
1 

) 

 

 
= 2R.( 

 
 

hcv 

KT 

 
)2

. 

− 

ehcv KT 

) 

 
 

 
By knowing 

 
 

− 

v at a moderate temperature the value of qe, Ee & 
(Cv)e can be evaluated. The possibility of electronic states would 
fail if applied to atomic chlorine at temperatures, greater than 
250K. The higher the temperature the greater is discrepancy. 

 
 
 
 

2.3 Thermodynamic functions in terms of partition function 
 

2.3.1 Internal energy from partition function 
 

Let E be the total energy of N molecules present in the system. 
Average energy <E> is given by 

 

E ∑ Eini 

( )
 

N ∑n 

i =0 

 
 

( E = ∑ Eini  

i =0 

 

N = ∑ni  from postulate (3) and (4) of Maxwell 
i =0 

Boltzmann Distribution Law) 

Applying Maxwell Boltzmann Distribution Law 
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Q = ∑ g e 

∞

Q = ∑ g e 

i i

g0

g 

i.c n = 
n0 g e− Ei KT 

 

in equation (1) 
i i Unit -2 

Partition Function 

∑ E 
n0 g e− Ei KT 

 

i  g i 

< E >= i =0 0  NOTE 

∑ 
n0 g e− Ei KT 

i =0 g0 
 

n0  ∑
∞ 

 
 E g e− Ei KT 

< >= i i 0 i =0 → ( ) 
E 

n ∞ 2 
    0 ∑ g e− Ei KT 

g0 i =0 

Molar Partition function (Q) is given by 
 

∞ 
− Ei KT 

i 
i =0 

 

i.e substituting Q value in equation (2) 
 

∑E g e− Ei KT 

Hence  < E >= i =0 → (3) 
Q 

 

∞ 
− Ei KT 

i 
i =0 

 

Differentiating ‘Q’ with respect to temperature at constant volume 

( 
∂Q 

)
 = (

 ∂ ∑ 
 

g e− Ei KT ) 
∂T  V ∂T 

 = ∑ 

i 
i =0 

 
 − E KT 

 

V 
 

 
− E0 −1 

 

i =0 

gie i
 ( 1 )( ) 

K T 2 
 

 
 ∂Q ∞ 

( 
 
E g e− Ei KT 

e f (x) = e f (x).df (x) ) 

( )V   = ∑  i i   
 

∂T i =0 KT 2 

 

 

KT 2 ( 
∂Q 

) = ∑ E g e− Ei KT → (4) 
∂T V i i  

i =0 
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Incorporation of this result in equation (3) 

KT 2( 
∂Q 

) 
Unit – 2 < E >= ∂T V 1 

( 
∂Q 

)
 

 
  = ( 

∂ ln Q 
)
 

 
 Partition Function 

 

NOTE 

 

Q 
 

 
< E >= KT 2 ( 

∂ ln Q 
) 

 

Q ∂T V ∂T V 

∂T V 

Internal energy E = KT 2 ( 
∂ ln Q 

) 
 

∂T 

q=molecular Partition function 

V 
 
 

qN = Q 
 
 

 
E = KT 

2 ∂ ln q N 
( 

∂T 
)V 

 

E = NKT 2 ( 
∂ ln q 

) → (5) 
∂T V 

 

Hence it is possible to determine the internal energy of the system 
if the partition function is known. 

 
 
 
 

2.3.2 Heat capacity from partition function 
 

 

( 
∂E 

) = C 
 

∂T  V V 

 

substituting E from (5) and simplifying the differential, we get 

C = 
∂ 

[NKT 2 
∂ ln q 

] 
  

V 
 
 

= 
NK 
T 2 

∂T 

∂2 ln q 
. 
∂(1 T )2 

∂T V 

 
 
 
 

Self-Instructional Material 
. 



Self-Instructional Material 
 

g g

q

2.3.3 Entropy from partition function 

Thermodynamic probability is the numbers of ways in which system 
consisting of N identical indistinguishable molecules can be realized. 
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∞   gni 

W  = π   i 
 

i =0  ni! 

 
∞ 

 
 
gni  

ln W  = ln( π    i  ) 
i =0  ni! 

 

∞ = ln( π ∞ 
gni  ) − ln( π n !) 

i =0    
i 

i =0  
i
 

 

∞ ∞ 

ln W  = ∑ni  ln gi  −∑ni ! → (1) 
i=0 i=0 

 

 
Applying stirlings approximation formula in equation (1) 

 
 

ln N!= N ln N − N 
 

 
∞ ∞ 

ln W  = ∑ni  ln gi  −∑(ni  ln ni  − ni ) 
i =0 i =0 

 

∞ ∞ ∞ 

ln W  = ∑ni  ln gi  −∑ni  ln ni  − ni  + ∑ni 

i=0 i=0 i=0 
 

According to Maxwell Boltzmann distribution law 

n = 
n0 g e− Ei KT 

 

 
but n0 = 

N 
 

 
‘q’-molecular partition function 

i i  
0 0 

 

 
Hence, n = 

N 
g e− Ei KT 

 

i q i 

 

ln W = ∑ n ln g  −∑ n ln( 
N 

)g e−Ei    KT   + ∑
∞   

n 
i 

i =0 
i i i 

i =0 
i 

i =0 
 

ln W = ∑ n ln g  −∑ n ln( 
N 

)g − ∑ 
 

n ln e−Ei    KT   + ∑ 
 

n = 0 
i 

i =0 
i i 

i =0 q i =0 
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∞ ∞
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i

N

N

∑
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ln W = ∑ 
i =0 

ni ln gi  

 

 

−∑ 
i =0 

ni ln 
N  

− 
∞ 

q i =0 

ni ln gi  

 

 

−∑ 
i =0 

∞ 
− Ei KT 

i i  
i =0 

 

NOTE 

= n ln(
 q 

) + 
ni Ei + N 

i=0 N KT 
( ∑ni 

i =0 

= N ) 

(ln and e gets cancelled, by postulate (3) of Maxwell Boltzmann 
distribution law ) 

 

ln W  = ∑n ln( 
 q 

) + 
  E 

+ N ( (n E 
 

= E) by postulate (4) of 
i=0 N KT 

Maxwell Boltzmann distribution law 
 

ln W = N ln q − N ln N + 
E 

+ N 
KT 

 

= N ln q − (N ln N ) − N + 
E

 
KT 

 

ln W = ln q N − ln( N!) + 
E

 
KT 

 

ln W = ln( 
q 

) + 
E 

N! KT 

Multiplying throughout by K 
 

K ln W = S = K ln( 
q 

) + 
KE 

N! KT 

(∴S = K ln W ) (Boltzmann-Plank entropy probability law) 

We know that internal energy 

E = NKT 2 ( 
∂ ln q 

) 
 

 
 

E = KT 

∂T V 

2 ∂ ln qN 
( 

∂T 
)V 

 

E = KT 2 ( 
∂ ln Q 

) 
 

∂T V 

qN 

=
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i.e. equation (2) becomes 

 
S = K ln Q + KT 2 

T 
( 

∂ ln Q 
)
 

∂T V 
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S = K ln Q + KT ( 
∂ ln Q 

) 
 

molar ∂T V 

Molar entropy of an ideal gas can be determined from the knowledge of 
partition function. 

 
 

2.3.4 Pressure from partition function 
 

dA = −PdV − SdT 

P = −( 
∂A 

) = −( 
∂A 

) ( 
∂Q 

)
 → (1) 

∂V V ∂Q T ∂V T 
 

Since Helmholtz free energy 
 

A = −KT ln Q ( ln Q = 
1 

) 
Q 

 

( 
∂A 

)
 = 

− KT → (2) 
∂Q T Q 

 

Substituting (2) in equation (1), we get 

P = 
KT 

( 
∂Q 

)
 

  

 
(or) 1 

( 
∂Q 

)
 

  = ( 
∂ ln Q 

)
 

 

Q ∂V T Q ∂T T ∂T V 
 

P = KT ( 
∂ ln Q 

) 
∂V T 

 
 

. 
 

2.3.5 Third law and partion function 
 

Internal energy E of a system is a function of T and V. 

E = f (T ,V ) 
 

Applying rules of partial differentiation, 

dE = ( 
∂E 

) dT + ( 
∂E 

) dV → (1) 
∂T V ∂V T 
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∫ T 

0

∫ T 

=

T

V 
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NOTE 

from the combined 1st and 2nd law of thermodynamics. 

dE = q − W 

dE = TdS − PdV 
 

TdS = dE + PdV → (2) 
Substituting the value of dE from equation (1) in equation (2), we 
get 

TdS = ( 
∂E 

) dT + ( 
∂E 

) dV + PdV → (3) 
 

( 
∂E 

)
 

 

∂T V 

 
= C 

∂V T 

∂T  V V 

 

At constant volume dV=0, i.e. equation (3) becomes 

TdS = CV dT 
 

dT 
dS CV     T

 
 

Entropy change for a finite process 
 

ST T dT 

∫ dS = ∫CV    T
 

S0 0 

 
 

 
ST − S0 = 

1 
.( 

∂E 
) dT 

0 ∂T 

 
E = KT 2 ( 

 
∂ ln Q 

∂T 

 
)v dT 

 
 

T 1  ∂ ∂ ln Q 
ST − S0 = ∫ T ∂T 

(KT 2( 
∂T 

)V )dT 

 
 

 
T 1 

ST − S0 = 
0 

 
∂KT 2( 

∂ ln Q 
)
 

∂T 

 
∫UdV = UV − ∫VdU 
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= 
1 

KT 2( 
T 

∂ ln Q 
)
 

∂T V 

T 

− ∫ KT 2( 
0 

∂ ln Q 
)
 

∂T V 
(− 

1
 

T 2 

 
)dT 
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= KT ( 

∂ ln Q 

∂T 

T 

)V + ∫ K∂ ln Q 
0 

 

NOTE 

S  − S  = KT ( 
∂ ln Q 

)  +[K ln Q]T 
 

T 0 ∂T V 0 

 
 

S − S = KT ( 
∂ ln Q 

) 
 

 
+ K ln Q 

 
− K ln Q 

T 0 ∂T V T =T T =0 

 

Comparing left and right hand sides and equating the temperature dependent 
and temperature independent terms we get 

S = KT ( 
∂ ln Q 

) 
 

 
+ K ln Q 

T ∂T V T =T 

 

S0 = K ln QT =0 

When T=0, Q=1 hence KlnQ=0 

This is 3rd law i.e. All perfect crystalline solids at 0oK will have zero entropy 
 

2.3.6 Helmholtz Free Energy from Partition Fuction 
 

Helmholtz free energy is A = -KTlnQ 

According to thermodynamic eqn 

A = E − TS 
 

 

Substituting the expressions for E and S in terms of partition function 

E = KT 2 ( 
∂ ln Q 

) 
 

(from internal energy) 
∂T V 

S = K ln Q + KT ( 
∂ ln Q 

) 
 

(from entropy) 
∂T V 

A = KT 2( 
∂ ln Q 

) − T (K ln Q + KT ( 
∂ ln Q 

) ) 
  

∂T V ∂T V 

A = KT 2( 
∂ ln Q 

) − KT ln Q − KT 2 ( 
∂ ln Q 

) ) 
  

∂T V ∂T V 
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∂T T ∂V V 

A = −KT ln Q 
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NOTE 

 
 
 
 

2.3.7 Enthalpy from partion function 
 

H = E + PV 

E = KT 2 ( 
∂ ln Q 

) 
 

 
(From internal energy) 

∂T 

P = KT ( 
∂ ln Q 

) 
∂T T 

V 
 
 
 

(From pressure) 

H = KT 2 ( 
∂ ln Q 

) + KT ( 
∂ ln Q 

) .V 
  

∂T V ∂V T 

= KT[T.( 
∂ ln Q 

) + V ( 
∂ ln Q 

) ] 
  

∂T V ∂V T 

H = KT[ 
∂ ln Q + 

∂ ln Q 
]
 

 
H = KT[ 

∂ ln Q + 
∂ ln Q 

]
 

  

∂ ln T ∂ ln V 
 

2.3.8 Gibbs free energy from partition function 
 

G = H − TS 

= E + PV − TS 

G = A + PV 

A = −KT ln Q 

P = KT ( 
∂ ln Q 

) 
 

∂T T 

G = −KT ln Q + KT ( 
∂ ln Q 

) .V 
 

 
G = KT[( 

∂ ln Q 
) 

∂ ln V T 

∂T T 

 
− ln Q]  
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∞

 
 

2.6 Check Your Progress 
 

1. Define partion function. 
2. Define canonical ensemples 
3. Give an expersssion for Helmholtz free energy from partition function. 
4. Give the σ value (symmetry factor) for H2O2, HCl, CO2. 

 
2.7 Answers to check your progress questions 

1. partition function describes the statistical properties of a system in 
thermodynamic equilibrium. Partition functions are functions of the 
thermodynamic state variables, such as the temperature and volume. 

Most of the aggregate thermodynamic variables of the system, such as 
the total energy, free energy, entropy, and pressure, can be expressed in 
terms of the partition function or its derivatives. The partition function is 
dimensionless, it is a pure number. 

A quantitative interpretation is provided by the use of certain general 
function is called “partition function”. Mathematically it was written as 

Unit -2 
Partition Function 

 

NOTE 

 

 
 

q = ∑ gie 
i=0 

− Ei 
KT 

 
 

Where ‘q’ is the molecular partition function 

2. A a thermodynamically large system is in thermal contact with the 
environment, with a temperature T, and both the volume of the system 
and the number of constituent particles are fixed. A collection of this 
kind of systems comprises an ensemble called a canonical ensemble. 

3. A = −KT ln Q 
4. σ values for H2O2, HCl, CO2 – 2, 1, 2. 

 
 

2.8 Summary 
 

• The molecular partition function indicates the number of thermally 
accessiblestates of a collection of molecules at a temperature T. 

• The translational partition function is calculated by noting that 
translational states form a near continuum. When the energy is a sum of 
contributions from independent modes of motion, the partition function 
is a product of partition functions for each mode of motion. 

• The internal energy is proportional to the derivative of the partition 
function with respect to temperature. 
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• The parameter β =1/kT. 
• The statistical entropy is defined by the Boltzmann 
formula but may be expressed in terms of the molecular partition 
function. 
• A canonical ensemble is an imaginary collection of 
replications of the actual system with a common temperature. It is 
used to extend statistical thermodynamics to include interacting 
molecules. 
• The thermodynamic limit is reached when the number of 
replications becomes infinite. 
• Most members of the ensemble have an energy very close 
to the mean value. 
• The internal energy of a system composed of interacting 
molecules is proportional to the derivative of the canonical 
partition function with respect to temperature. 
• The entropy of an interacting system can be calculated 
from the canonical partition function. 

 

2.9 Keywords 
 

1. The molecular partition function indicates the number of 
thermally accessiblestates of a collection of molecules at a 
temperature T. 
2. A canonical ensemble is an imaginary collection of 
replications of the actual system with a common temperature. It is 
used to extend statistical thermodynamics to include interacting 
molecules. 
3. The thermodynamic information in partition function  
a) The internal energy of a system composed of interacting 
molecules is proportional to the derivative of the canonical 
partition function with respect to temperature. 
b) The entropy of an interacting system can be calculated 
from the canonical partition function. 
The following functions are written in terms of the canonical 
partition function: 
(a) Helmoltz energy, 
(b) Pressure, 
(c) Enthalpy, 

(d) Gibbs energy. 
4. The molecular partition function factorizes into a product of: 
a) translational, 
b) rotational, 
c) vibrational, and 
d) electronic contributions. 
The contributions to the overall partition function are summarized 
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2.10 Self-assessment questions and exercises 
 

1. Define Molecular partition function and ensembles. 
2. Define partition function and thermodynamic functions 
interms of partition function. 

 

2.11 Further readings 
 

 
1. Statistical Thermodynamics, M.C. Gupta, Wiley 
Eastern, New Delhi,1990. 

 
2. Introduction to Statistical Thermodynamics, 
R.P.H.Gasser and W.G.Richards, World Scientific, Singapore, 
1995. 

 
 

3. Physical chemistry, Peter Atkins, Julio De Paula, 9th 
edition, 2010 
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UNIT- III statistical interpretation of third law 
 

 

Structure 
3.0 Introduction 
3.1 Objectives 
3.2 Bose Einstein Distribution Law 

3.2.1 Photon Gas – Application of Bose Einstein Law 
3.2.1.1Derivative of Planck’s Black Body radiation law 
3.3 Fermi – Dirac Distribution Law 
3.3.1 Electron Gas – Application of Fermi Dirac Distribution Law 
3.3.1.1 Determination of Average Energy of Free Electrons in Metals 
3.4 Check Your Progress 
3.5 Answers to check your progress questions 
3.6 Summary 
3.7 Keywords 
3.8 Self-assessment questions and exercises 
3.9 Further readings 

 
3.0 Introduction 

The Third law of thermodynamics is sometimes stated as follows, 
regarding the properties of closed systems in thermodynamic 
equilibrium: 

The entropy of a system approaches a constant value as its temperature 
approaches absolute zero. 

This constant value cannot depend on any other parameters 
characterizing the closed system, such as pressure or applied magnetic 
field. At absolute zero (zero kelvin) the system must be in a state with 
the minimum possible energy. Entropy is related to the number of 
accessible microstates, and there is typically one unique  state (called 
the ground state) with minimum energy.[1] In such a case, the entropy at 
absolute zero will be exactly zero. If the system does not have a well- 
defined order (if its order is glassy, for example), then there may remain 
some finite entropy as the system is brought to very low temperatures, 
either because the system becomes locked into a configuration with non-
minimal energy or because the minimum energy state is non- unique. 
The constant value is called the residual entropy of  the system.[2] The 
entropy is essentially a state-function meaning the inherent value of 
different atoms, molecules, and other configurations of particles 
including subatomic or atomic material is defined by entropy, which can 
be discovered near 0 K. The Nernst–Simon statement of the third law of 
thermodynamics concerns thermodynamic processes at a fixed, low 
temperature: 

The entropy change associated with any condensed system 
undergoing a reversible isothermal process approaches zero as 
the temperature at which it is performed approaches 0 K. 



 

π

Here a condensed system refers to liquids and solids. A classical 
formulation by Nernst (actually a consequence of the Third Law) is: 
It is impossible for any process, no matter how idealized, to reduce the 
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entropy of a system to its absolute-zero value in a finite number of Statistical Interpretation 

operations. 

There also exists a formulation of the Third Law which approaches the 
subject by postulating a specific energy behavior: 

If the composite of two thermodynamic systems constitutes an isolated 
system, then any energy exchange in any form between those two systems 
is bounded 

 
3.1 Objectives 

After going through this unit, you will be able to: 
• Explain about statistical interpretation of third law 
• Understand the concept of Bose Einstein distribution law and it’s 

applications 
• Understand the concept of Ferrmi Dirac distribution law and it’s 

application. 
 

3.2 Bose Einstein distribution law 

The statistics applicable to particles whose total wave function is 
completely symmetric is known as Bose – Einstein distribution law. Bose 
Einstein statistics is applicable to Bosons, which are particles with integral 
spins. i.e 0,1,2,3,4--- ex:photons, 2

4He, 2H, 14N, 16O, CO2 etc. In the 
statistics thermodynamic probability is the number of ways in which the 
(ni) indistinguishable particles can be placed in distinguishable boxes or 
energy levels (gi) without limiting the number of particles placed in each 
box or energy level. 

of Third Law 

NOTE 

 
 

W = 
∞  (gi  −1 + ni )! 

 

i=0   (gi −1)!ni ! 
 

 

Where W is the total probability, ni is the number of particles in the ith level 
having the degeneracy gi. 

Consider a system of N particles of an ideal gas, which are 

identical, independent and indistinguishable let no particles have energy Eo. 

n1 particles are in the energy state E1. 
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NOTE 

n2 particles are in the energy state E2 

. 

. 

. 

. 
 
 

n3  particles are in the energy state Ei. 
 

 

Such that ∑ ni = N 
i=0 

and 

 
 

∑ Eini = E 
i=0 

 

Total number of particles in the system is constant and hence there is no 
variation in the total number of particles. 

∂N = 0 i.e 
 

∑ Ei∂ni = 0 → (1) 
i =0 

 

Total energy of the system is constant 

∂E = 0 i.e 
 

∑ Ei∂ni = 0 → (2) 
i =0 

 

Equations 1 and 2 are the two conditions of constraint for a system of gas 
in statistical equilibrium. 

Maximization of thermodynamic probability 

According to Bose – Einstein statistics thermodynamic probability is the 
number of ways in which the system of (ni) identical indistinguishable 
particles can be placed in different energy levels (gi) without any 
limitation to the occupation number is 

 
∞ 

W = π 
i=0 

(gi −1+ ni )! 

(gi −1)!ni ! 
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∞



 

the degeneracy gi and gi>>ni 

Since gi is very large (gi >>1) one can be neglected and 
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 ∞ (g 

 
+ n )! 

of Third Law 

NOTE 
W  = π 

i=0 

  i i   

gi !ni ! 
 

∞ 

ln W = ln( π 
i=0 

(gi + ni )!)
 

gi !ni ! 
 

∞ ∞ ∞ 

ln W = ∑ln( gi + ni )!−∑ln( gi )!−∑ln( ni )! 
i=0 i=0 i=0 

 

 
On using stirlings approximation for factorials of large 
numbers. 

 

 
∞ ∞ ∞ 

ln W  = ∑[( gi  + ni ) ln( gi  + ni ) − (gi  + ni )] − ∑ (gi  ln gi  − gi ) − ∑ (ni  ln ni  − ni ) 
i=0 i=0 i=0 

 
 

∞ ∞ ∞ ∞ ∞ ∞ ∞ 

ln W = ∑ (gi  + ni ) ln( gi  + ni ) − ∑ gi  − ∑ni  − ∑ gi ln gi  + ∑ gi  − ∑ni ln ni  + ∑ni 

i=0 i=0 i=0 i=0 i=0 i=0 i=0 
 

∞ ∞ ∞ 

= ∑ (gi  + ni ) ln( gi  + ni ) − ∑ gi  ln gi  − ∑ ni  ln ni 

i=0 i=0 i=0 

 
 

For a system which has attained statistical equilibrium 
there will be most probable distribution of molecules and 
the thermodynamic probability of the system will be 
maximum and hence, 

 
 

∂W = 0 (or) ∂ln W = 0 

∂ ln W = ∑
∞  

(g  + n ) 
  1  +∑

∞  

ln( g  + n )∂n − 0 − ∑
∞  

(n × 
 1 + ln n )∂n  = 0 i i (g + n ) i i i i n i i  

i =0 i i i =0 i =0 i 
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∞

∞

∞

∞

i

n

n

n 

n

∞ ∞ 

= ∑(1+ ln( gi + ni ))∂ni − ∑(1+ ln ni )∂ni = 0 
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i=0 i=0 
 

∂ ln W = ∑ln( 
gi + ni )∂n = 0 

 
 

 Third Law 
 

NOTE 

i =0 
 

∂ ln W = ∑ 
ni  

ln(1 + 
gi )∂n = 0 

 

i 
i =0 i 

 

∂ ln W = −∑ln(1 + 
gi )∂n 

 

= 0 → (3) 
i 

i =0 i 
 

Equation (3) is the third condition of constraint. 

Since there is more than one constraint in the system Larangian 
method of undetermined multiplier is applied to solve the problem. 

Equation (1) multiplied by α, (2) by β and combined with equation (3), 
we get 

α ∑∂n + β ∑ E ∂n − ∑ ln(1+ 
gi )∂n = 0 

 

i 
i=0 

i i 
i=0 

i 
i=0 i 

 

Where α &β are the lagrangian undetermined multipliers. 
 

∑(α + βE − ln(1+ 
gi )∂n ) = 0 

 

i i  
i=0 i 

 

∂n ' s will vary independently and hence 

must be equal to zero. 

∂ni ≠ 0 and coefficient of ∂ni 

α + βE − ln(1+ 
gi ) = 0 

 

i 
i 

 

ln(1+ 
gi ) = α + βE 

 
1+ 

gi
 

ni 

ni 

 
= eα + βEi  

 

gi   = (eα +βEi  ) −1 
ni 
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(eα +βEi ) −1 

 
α = − µ RT β =1 kT 
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∞
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n

i



 

α +βEi 

ni = 
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As T→∞ eα +βEi   >>1 and hence ‘1’ in the denominator can be neglected to 

get Maxwell Boltzmann distribution law. At low temperatures and for 
problems concerned with radiation ‘1’ in the denominator cannot be 
neglected. 

 
 

Applications 

1. Bose Einstein distribution law is useful to determine the number of 
identical and indistinguishable particle in the ith level having the 
degeneracy gi with energy Ei excess of the zero of the zero point level. 
2. It is used to explain the behavior of Helium at low temperature 
through Bose – Einstein condensation. 
3. It is used to explain the radiation by considering them as photons. 
It is used to derive Planck’s Black body radiation law and all the classical 
laws of black body radiation. 

 
 
 

3.2.1 Photon Gas – Application of Bose – Einstein Distribution Law 

3.2.1.1Derivation of Planck’s Black Body radiation law 
 

According to Bose-Einstein Distribution law the number of identical 
indistinguishable particles ni having the specified energy Ei in excess of 
zero point energy is 

NOTE 

 
ni = gi  

 

(e ) −1 
→ (1) 

 

Where, ‘gi’ is the degeneracy factor of the translational levels. 
 
 

Electromagnetic radiations consist of discrete energy particles 
called photons contained in a container of volume v with a definite 
energy. Photons do not interact with each other and hence a very small 
black body is assumed to the present in the container to absorb and emit 
photons and thus thermal equilibrium is possible. Gibbs free energy of 
radiation is zero at equilibrium and hence µ = 0 and α = − µ RT = 0 . 
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e 
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For this system Bose Einstein distribution law i.e. equation 
(1) becomes. 
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n = 
gi

 
i βEi −1

 → (2) 

 
NOTE 

( α = − µ RT = 0 ) 

 

dgi, the degeneracy of the translational states is equal to the 
number of lattice points contained in 1/8th of the spherical 
shell of radius n and thickness dn . the number of lattice 
points corresponding to the specified energy range us given 
by 1/8th the volume of the spherical shell of radius n and 
thickness dn. 

= 
4πn2dn = 

πn2dn → ( )  dg 3 
8 2 

The length ‘l’ of the box is related to the wavelength of the de-Broglie 
wave in particle of one dimensional box as 

l = n λ 2 = v1 3 

2v1 3 

n = 
λ

 = 
2v1 3γ 

c 
Qλ = c γ 

3 = 
23 vγ 3 

3n2dn = 

c3 

 
23v3γ 2 

c3 

 
 
dγ ⇒ n2dn = 

 
8vγ 2dγ 
 

 

c3 

Substituting the value of n2dn in equation (3) 

= 
π 8vγ 2dγ → ( ) 

dg 
2 c3 4 

Radiations are polarized in two ways (i.e. equation (4) ×2) 

Hence, dg = 2. 
π 

. 
2 

8vγ 2dγ 
c3 
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γ γ 

dg = 
8πv 

.γ 2dγ → (5) 
c3 
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dN = 

 
 
8πv 
c3 

Replacing gi, by dgi and ni  by dni and substituting dg value (5) 
in equation (2) we get 

γ 2dγ 
. 
((eβEi  ) −1 

NOTE 

 

 
‘dN’ is the number of photons in the energy range from v and v+dv. To 
obtain the total energy in the range v and v+dv, dN is multiplied by hv, 
which is the energy of one photon. 

dE = hγ .dn 
 

dE = hγ . 
8πv

 
c3 

γ 2dγ 
. 
((eβEi  ) −1 

= E  d
 

 

Energy density=energy per unit volume. 
 

 

dn = 
dE

 
v 

= 
8πhγ 3dγ 
c3(eβε i    −1) 

 

dE = 
v 

8πhγ 3dγ 
c3 (e 

βεi KT 

−1) 
= Eγ .dγ 

 

This is Planck’s radiation law in terms of frequency conversion in terms of 
λ. 

 

 

γ = c λ 
 

8πhc4dλ 

γ 4 = 
c4

 

λ4 

 
3 4 −5 

dµ = 

 
8πhc 

 
 
  dλ  

4γ dγ = c . − 4λ dλ 
 

γ 3 c4 
 

dµ = 
λ5 . (ehc λKT −1) dγ = 

λ5 .dλ 
 

dµ = Eλ dλ 
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NOTE 

This expression is Planck’s radiation law expressed in terms 
of wavelength. 

When energy density is plotted as a function of λ, the 
following graph is obtained. 

 
 
 

 
 

Experimental observation 
 
 

1. Energy is not distributed uniformly throughout the spectrum. 

2. Energy density is minimum both as λ→0 & λ→∞. It increases as λ 
increases, attains a maximum then decreases. The wavelength at which 
energy density is maximum is called λ max and the maximum energy 
density corresponding to λmax is called Emax. 

Emax increases with increase in temperature and λmax decreases with 
increase in temperature. 

3. Total energy density increases with increase in temperature. 

All the experimental observation is explained by Planck’s radiation 
law. 

 
 
 
 

3.3 Fermi – Dirac Distribution Law 
 

 

Need for Fermi – Dirac distribution law 
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∞ 

∞ 

1. Maxwell Boltzmann distribution law fails to explain the 
low temperature behavior of helium and the spectrum of black – 
body radiation. 
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2. It does not explain the properties of “electron gas” in Statistical Interpretation 
metals. 
3. It fails to explain the behavior of ideal gas containing 
identical indistinguishable molecules. 

 
Derivation of Fermi-dirac distribution law 

Consider a system of N identical independent indistinguishable particles 
of an ideal gas. Let there be no particles in the energy state Eo, n1 particles in 
the energy state E1, n2 particles in the energy state E2 and so on. 

 

1. Total number of particles ∑ ni = N 
i=0 

Since the total number of particles in the system is constant. 

of Third Law 

NOTE 

 
 

 

∑∂ni  = 0 → (1) 
i =0 

 

This is the first condition of constraint. 

2. Total energy of the system is constant 

∑ Ei∂ni = 0 → (2) 
i =0 

 

 
This is the second condition of constraint. 

 
 

Maximization of thermodynamic probability 

According to Fermi- dirac statistics the thermodynamic probability or 
the number of ways in which ni identical indistinguishable particles can be 
distributed among gi energy levels of energy Ei . Such that not more than one 
particle can occupy a given level is given by 

 

 

Wi = 
(g

 
gi ! 

− n )!n ! 
i i i  

 

The total number of ways for the whole system consisting of N particles 
would be 
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∞

∞ ∞ gi !  

π Wi = W = π 
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i=0 i=0 (gi − ni )!ni ! 

Interpretation of 
∞ 

ln W = ln π gi! → (a) 
Third Law 

 

NOTE 

 

i =0 (gi − ni )!ni ! 

Applying stirlings approximation formula in equation (a) 

∞ ∞ ∞ 

ln W = ln π gi!− ln π (gi − ni )!− ln π ni! 
i=0 i=0 i=0 

 

∞ ∞ ∞ 

ln W = ∑ln gi !−∑ln (gi − ni )!−∑ln ni ! 
i=0 i=0 i=0 

ln N!= N ln N − N 
 

∞ ∞ ∞ 

ln W  = ∑ gi  ln gi  − ∑ (gi  − ni ) ln (gi  − ni ) − ∑ni  ln ni  

i=0 i=0 i=0 

 
 

For a system in statistical equilibrium thermodynamic probability 
must be maximum. Hence maximization of thermodynamic 
probability must be maximum. Hence maximization of 
thermodynamic probability leads to ∂ ln W = 0 

 
 

∂ ln W = 0 − ∑ (g n .
 1 ∂n 

 
+ ln (g − n )∂n ) − ∑ (n .

 1 ∂n + ln n ∂n ) = 0 
i    i  g n i i i i i  n i i i  

i =0 i   i i =0 i 

 
 

∞ ∞ 

= −∑(1+ ln( gi − ni )∂ni −∑(1+ ln ni )∂ni = 0 
i=0 i=0 

 

= −∑ln( 
gi − ni )∂n = 0 

 

i=0 
 

= −∑ 

ni  

ln( 
gi −1)∂n 

i 
 
 
 

= 0 → (3) 
i =0 ni 
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This is the third condition of constraint. In order to solve the 
problem for the system consisting of two or more conditions of 
constraint Lagrangian method of undetermined multipliers used. 
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∞

∞

n

Equation (1) is multiplied by α and equation (2) by β and 
combined with the condition (3), α and β are the lagrangian 
undetermined multipliers. 
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α ∑∂n + β ∑ E ∂n − ∑ ln( 
gi −1)∂n = 0 

 

 
NOTE 

i 
i=0 

i i 
i=0 

i=0 ni 

∑(α + βE −ln( 
gi −1)∂n = 0 

  i 
i =0 i 

Since ∂ni ’s can vary independently ∂ni ≠0 and hence 
 

α + βE − ln( 
gi −1) = 0 

 

i 
i 

 

ln( 
gi −1) = α + βE 
ni 

gi −1 = e(α + βEi ) 

ni 
 

gi = e(α + βEi ) +1 

ni 
 

n  = 
gi

 
i e(α + βEi ) +1 

 
n = 

→ (4) 

i 
 
 

Equation (4) is the mathematical expression of Fermi-Dirac distribution law. 

Application 

1. It is applied to explain the behaviour of “electron gas” in metals and 
thermionic emission and semiconductors. 

2. It helps to determine the number of particles in the ith state with 
degeneracy gi, having energy Ei in excess of zero point energy. 

 
3.3.1 Electron Gas – Application of Fermi-Dirac Distribution Law 

 

 

3.3.1.1Determination of Average Energy of Free Electron Metals 
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i

gi 

e(−µ RT + Ei KT ) +1 

∞ ∞

n 

i



 

n = 
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A metal, each of whose atoms contribute one or more free 
conducting electrons is regarded as “electron gas”. 

The number of electrons having energy in the range between 
E and E+dE is given by Fermi-Dirac distribution law. 

 
 

NOTE  
dN = 

 
dg 

 
 

Ei −E f 
 

e  KT +1 
 

 
The number of energy levels in the range between E and E+dE 

for electron in a box of volume is twice that for particles in a 
box of volume is twice that for particles in a box of volume V 
because electrons have spin of +1/2 or -1/2. So for electrons, 

 

 

= × 
πn2dn = π 2

 
 

 

→ ( ) 
dg 2 

2 

n2h2 
3
 

n dn 1 

2 2 3 
 E = ( a = v 

8ma2 

2 8mv2 3E 

, a  = v ) 

 
 

h2 

 
(8m)1 2V 1 3 E1 2 

n 
h 

3 (8m)3 2VE3 2 
n = 

 

3n2dn = 

h3 

(8m)3 2 
h3 

 
 

.V .3 2 E1 2dE 

Substituting the value of n2dn in equation (1), we get 
 

 
 

dg = π (8m)3 2 

2h3 

 
.V .E1 2dE 

 
 

Self-Instructional Material 
Hence, 

 
46 

=



 

(8m)3 2 

dN = (8m)3 2.π .V .E1 2dE 
 

 E −E  

2h3.(e 
i F 

KT +1) Unit – 3 
Statistical Interpretation

dN = 
(8m)3 2.π .V .E1 2 

dE Ei −EF  

2h3.(e KT +1) 

of Third Law 

NOTE 
 
 

This equation is called Fermi – Dirac formula of free electrons. This 
represents energy distribution for free electrons. 

At absolute zero (i.e. T=O). The particles occupy the lowest level upto 
EF, Fermi energy. Fermi energy indicates the maximum energy of fermions in 
the system. 

If there are N electrons in the metal at absolute zero and if the 
maximum energy of an e-n is EFo is for O<Ei <EFo 

 

 

N = ∫ dN = 
EF0 

∫ (8m)3 2.π .V 
Ei − EF  

 
.dE 

0  2h3.(e  KT + 1) 
 

At absolute zero when Ei <EFo 
 
 

EF0   (8m)3 2.π .V 

∫ dN = N = ∫ 
0 

2h
3 

.dE 

 
 

(8m)3 2.π .V . EF 3 2 
N =  0  

 
 

EF0 

2h
3 

 
= 

3 2 
 
3Nh3 

 

= 
3N × 

h 

πV 
 

EF = (
3N 

)2 3 
0 πV 

h3 
2 3

 

(
(8m)3 2 

)
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EF0 = 
8m 

(
πV 

) 
= ( . p) 

8m π 

Third Law 
 

NOTE 

N/V is the number of free electrons per unit volume. It is the 
free electron density (ρ). Fermi energy for free electrons in 
metals can be calculated by knowing the free electron density. 

 

3.4 Check Your Progress 
 

1. What is the third law of thermodynamics? 
2. What is the need of Fermi Dirac distribution law? 
3. Give the applications of Bose Einstein law. 
4. Give the applications of Fermi Dirac distribution law 

 

3.5 Answers to Check Your Progress Questions 
 

 

1. Third law of Thermodynamics 
• The third law of thermodynamics is sometimes stated as 
follows,   regarding   the    properties    of    closed    systems    
in thermodynamic equilibrium. 

• Here a condensed system refers to liquids and solids. A 
classical formulation by Nernst (actually a consequence of the 
Third Law) is: 

• It is impossible for any process, no matter how 
idealized, to reduce the entropy of a system to its absolute-zero 
value in a finite number of operations. 

• There also exists a formulation of the Third Law which 
approaches the subject by postulating a specific energy 
behavior: 

• If the composite of two thermodynamic systems 
constitutes an isolated system, then any energy exchange in any 
form between those two systems is bounded. 
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2. Need for Fermi Dirac distribution law 

• Maxwell Boltzmann distribution law fails to explain the 
low temperature behavior of helium and the spectrum of black – 
body radiation. 
• It does not explain the properties of “electron gas” in 
metals. 
• It fails to explain the behavior of ideal gas containing 
identical indistinguishable molecules. 
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3. Applications of Bose Einstein distribution law 
• Bose Einstein distribution law is useful to determine the number of 
identical and indistinguishable particle in the ith level having the degeneracy 

 

 
Unit – 3 

gi with energy Ei excess of the zero of the zero point level. Statistical Interpretation 

• It is used to explain the behavior of Helium at low temperature 
through Bose – Einstein condensation. 
• It is used to explain the radiation by considering them as 
photons. It is used to derive Planck’s Black body radiation law and all 
the classical laws of black body radiation. 
4. Fermi Dirac distribution law 
• It is applied to explain the behaviour of “electron gas” in metals 
and thermionic emission and semiconductors. 
• It helps to determine the number of particles in the ith state with 
degeneracy gi, having energy Ei in excess of zero point energy. 

 
 

3.6 Summary 
 

• Bose–Einstein statistics describe one of two possible ways in 
which a collection of non-interacting, indistinguishable particles may 
occupy a set of available discrete energy states at thermodynamic 
equilibrium. 
• The Bose–Einstein statistics apply only to those particles not 
limited to single occupancy of the same state—that is, particles that do 
not obey the Pauli exclusion principle restrictions. Such particles have 
integer values of spin and are named bosons, after the statistics that 
correctly describe their behaviour. There must also be no significant 
interaction between the particles. 

• Fermi–Dirac and Bose–Einstein statistics apply when quantum 
effects are important and the particles are "indistinguishable". Quantum 
effects appear if the concentration of particles satisfies 

• Fermi–Dirac statistics apply to fermions (particles that obey 
the Pauli exclusion principle), and Bose–Einstein statistics apply 
to bosons.. Both Fermi–Dirac and Bose–Einstein become Maxwell– 
Boltzmann statistics at high temperature or at low concentration. 

 
 

 

3.7 Keywords 
 

The Bose Einstein distribution describes the statistical behaviour 
integer spin particles (bosons). At low temperature, bosons can behave 
very differently than fermions because an unlimited number of them 
can collect into the same energy state, a phenomenon called 
“condensation”. 

The Fermi Dirac distribution function, also called Fermi 
function, provides the probability of occupancy of energy 
levels by fermions. Fermions are half – integer spin 
particles, which obey the Pauli exclusion principle. The 
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NOTE 

Pauli exclusion principle postulatestht only one fermion 
can occupy a single quantum state. 

 
 
 
 
 

3.8 Self-Assessment Questions and Exercises 
 

1. Derive Bose Einstein distribution law and give its 
applications. 

2. Derive Plank’s black body radiation law using Bose Einstein 
distribution law. 

3. Derive Fermi Dirac distribution law and give its applications. 
4. Determind the average energy of free electron metals using 
Ferrmi Dirac distribution law. 

 

3.9 Further Readings 
 

1. Statistical Thermodynamics, M.C. Gupta, Wiley 
Eastern, New Delhi,1990. 

 
2. Introduction to Statistical Thermodynamics, 
R.P.H.Gasser and W.G.Richards, World Scientific, Singapore, 
1995. 

 
 

3. Physical chemistry, Peter Atkins, Julio De Paula, 9th 
edition, 2010 
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Unit -4: Heat Capacity of solids 

Structure 
4.0 Introduction 
4.1 Objectives 
4.2 Heat Capacity 
4.2.1 Classical observation of heat capacity of solids 
4.2.2 Einstein theory of heat capacity of solids 
4.2.3 Debye theory of heat capacity of solids 
4.3 Non equilibrium thermodynamics 
4.3.1 Postulates of local equilibrium Onsager formulatio 
4.4 Check your progress questions 
4.5 Answers to check your progress questions 
4.6 Summary 
4.7 Keywords 
4.8 Self-assessment questions and exercises 
4.9 Further readings 

 
4.0 Introduction 

Heat capacity or thermal capacity is a physical property of matter, 
defined as the amount of heat to be supplied to a given mass of material to 
produce a unit change in its temperature. The SI unit of heat capacity is joule 
per Kelvin (J/K). Heat capacity is an extensive property. The corresponding 
intensive property is the specific heat capacity. Deviding the capacity by the 
amount of substance in moles yields its molar heat capacity. The volumetric 
heat capacity measures the heat capacity per volume. 

 
4.1 Objectives 

• To understands the heat capacity of the solids and classical 
observation of heat capacity of solids 

• To understand the Einstein theory of heat capacity 
• To undertand the Debye theory of heat capacity 
• To understand the Non equilibrium thermodynamics and 

Onsager reciprocal relation. 
 

4.2 Heat capacity 
Heat capacity is the quantity of heat required to raise the temperature of the 
whole of the substance through 1K. 

Even at absolute zero the atoms in a solid will be vibrating 
about their equilibrium positions. When the temperature is 
increased the amplitude of vibration increases and vibrational 
energy of the atoms of the solid is increased, it is the rate of 
change of vibrational energy of the solid with temperature that 
determine the heat capacity of solids is 

51 

 

 
Unit – 4 
Heat Capacity of 
soilds 

 
NOTE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Self-Instructional Material 



 

 
 

Unit – 4 
Heat Capacity of 

( 
∂Evib ) 
∂T v 

 
= Cv 

soilds 
 
 

NOTE 

 
 

4.2.1 Classical observation of heat capacity of solids 
An ideal solid is one which consists of space lattice of 
independent atoms vibrating about their equilibrium 
positions. They do not interact with each other. Each atom is 
considered to be a simple harmonic oscillator and can vibrate 
in three mutually perpendicular direction and can have three 
vibrational degree of freedom. 

According to equipartition principle of energy each 
vibrational degree of freedom contributes one KT to the total 
energy of crystal per atom. A solid consisting of 3N atoms 
will have 3N vibrational degree of freedom and hence will 
contribute 3NKT or 3RT/gram atom. 

 

 

Evib = 3RT 

C = ( 
∂Evib ) 

v ∂T v 
= ( 

∂3RT 
) = 3R 

∂T 

3×1.1987cal/degree/gm.atom 

Cv = 5.941 cal/degree/gm.atom 

Cv = 3×8.314 cal/degree/gm.atom 

Cv = 24.942 cal/degree/gm.atom 

 

According to the classical principle the heat capacity at 
constant volume must be constant and independent of 
temperature. Heat capacity measurements are usually made at 
constant pressure and hence Cv can be converted into Cp 
using thermodynamic relationship. 

 

 

Cp =Cv + T.VαV 2 
 

 

β 
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Where αv is  the  coefficient  of  thermal expansion and β 
compressibility factor , V= atomic volume. 
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4.2.2 Einstein’s theory of heat capacity of solids  
Classical theories failed to explain its behaviour of variation of atomic 
heat capacities of solid elements with temperature due to the assumption 
that solid elements absorb heat continuously. Einstein used Quantum 
theory to explain all the experimentally observed regarding the variation 
of heat capacity with temperature. 

Assumption of Einstein’s theory 

1. Heat is absorbed or radiated in the form of discrete packet called 
photons. Each photon has energy equal to hγ. 

2. Each solid consists of atoms arranged in space lattice and are 
independent. 

3. Each atom is considered as a simple harmonic oscillator. 
4. The atoms vibrate about their equilibrium position with a 

uniform frequency which is independent of the presence of 
neighboring atoms. This frequency is represented as γ and is 
called Einstein’s characteristic frequency. 

5. The frequency of vibration of atom is characteristic of the 
particular solid concerned. 

6. Each atom has got 3 independent vibrational degrees of freedom. 
7. The average ‘E’ per degree of freedom is not equal to ‘Kt” given 

Unit – 4 
Heat Capacity of 
soilds 

 
NOTE 

by equipartition principle, but is equal to 

b planck’s using quantum theory. 

 
Vibrational energy associated with one atom 

hv 
as calculated 

ehv KT −1 

 

= 
hv 

ehv KT   − 1 
 

Vibrational energy associated with 3N atom 
 

 

= 
 

Heat capacity at constant volume 
 

C 

3Nhv 

ehv  KT  −1 

 
 

= ( 
∂Evib )  

V ∂T V 
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Cv = 

∂ 
( 

3NhvE 
)
 

∂T 
∂ hvE KT −1 

 

 soilds = 3NhvE 
∂T 

(e −1) 

 

NOTE  
Multiplied and divided by K 

 = 

 
 

ehvE KT 

 
 
 

hvE 
3NhvE 

(ehvE KT −1)2 KT 2 
 

= 
hvE 2 

 
 

ehvE KT 

3NK( 
KT 

) . 
(ehvE KT −1)2 

= 
ehvE KT hvE 

 
 

2 → ( ) 
3R.

(ehvE KT −1)2 
( 

KT 
) 1 

θ   = 
hνE 

E K 

NA= Avagadro number 

n = number of gram atoms 

N = NA , NAk = R 

Put θE = hνE/K, where θE 

temperature. 

is called Einstein’s characteristic 

 

 

= 
eθ E T 

θE 2 → ( ) 
 

Cv 3R 
(eθ E T −1)2 ( T 

) 2 
 

Equation (1) and (2) are called Einstein’s heat capacity 
equation. 

 
 

Factor explained by Einstein’s theory 
 
 

According to Einstein’s theory heat capacity equation 
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1. Cv varies with temperature. It is a function of and it is 
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E

related to temperature in an exponential manner. 
2. It explains the shape of the curve . since θE is 
related to νE as θ = 

hνE 
, Cv is a function of νE /T, νE Unit – 4 

E K Heat Capacity of 

is the Einsteins characteristic of the element under 
consideration. The solid having more or less comparable 
νE values will have the same type of curve. When Cv is 

soilds 

 
NOTE 

plotted as a function of T/θE 

following graph is obtained . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3. As T→0 Cv attains zero value 
Einsteins heat capacity equation is 

for many elements the 

 

 

Cv = 3R 
eθE T 

(
θ    E )2 

T 
 

 

As T→0, θ  /T→∞ , e θ E   / T >>1. 

 
 

And hence ‘I’ in the denominator of Einsteins heat capacity of 
equation can be neglected and hence the equation becomes 

 

 

eθE  T θ 2
 θ 2 −θ T 

 
CV = 3R. .( E ) 

T 
= 3R( E ) .e E 

T 
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NOTE 

As T→0 

e−θE   T   → e−α  = 0 

Hence Cv = 0 

4. As T→∞ Einsteins equation reduces to Dulong and Petits law 
is Cv = 3R Einsteins Equation is 

 

 

Cv = 3R 
eθ E T 

(
θ    E )2 

T 
 

As T→∞, θE /T will tend to zeroθE /T is expanded as power 

series of θE /T. 
 

 
θ T 2 

 
(θ T ) (θ T )2 (θ T )3 2 

(e E −1) = (1+    E +    E +    E + −1) 
1! 2! 3! 

 

 

= (
θE

 

T 

 
)2 (1+ + 

2! 

 
+ ..................)2 

3! 
 

 

As T→∞, θE /T will be very small and except to I terms all other 
terms can be neglected. Hence, 

(eθE   T   −1)2 ≈ (
θE  )2 
T 

As T→∞, substituting this condition in the Einstein heat capacity 
equation 

 
CV = 3R eθ E T × (

θ    E )2 
 
= 3R.e0 

 
= 3R 

(θE / T )2 T 
 

As T→∞, Cv = 3R . This is Dulong petits law. 
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C 

 
Limitations 

1. It predicted satisfactorily the value of specific heat of solids at high 
temperature. But at low temperature the predicted value 
are found to be lesser than the experimental values. 

 
 

2. It fails to describe the behaviour of crystals near absolute zero. 
Failure of this theory is due to the assumption that all the 
atoms in the crystals are independent and oscillate with 
uniform frequency. He neglected the mutual forces 
exerted by the atom upon each other Debye modified 
Einstein’s theory. 

 
 
 
 
 

 

4.2.3 Debye theory of heat capacity of solids 
 

Einsteins theory fails to describe adequately the behaviour of crystals 
near absolute zero. Failure of Einstein’s theory is due to the 
assumption that all the atoms in a solid oscillate with uniform 
frequency. He neglected the mutual forces between the atoms. Due to 
Proximity of atoms in a solid there will be interaction and hence the 
atoms cannot osciallate with uniform frequency. A solid containing N 
atoms will behave as N coupled oscillators and their frequency will 
vary from zero to a maximum value ( ν max). In order to determine the 
distribution of frequencies Debye disregarded the structure of the solid 
and he treated it as a homogeneous continuous elastic medium the 
vibrations of atoms are considered as equivalent to elastic waves 
propagated in the elastic medium with different frequencies. 

When a continous solid is subjected to elastic vibrations, two 
kinds of vibrations are produced. 

1. Transverse vibration and 
2. longitudinal vibrations 

According to vibrational theory 

Number of modes of longitudinal vibrations 
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NOTE 

Per unit volume with frequencies in the range ν+dν is= 

Where --- is the velocity of the longitudinal vibrations. 

 

4πv2dv 3 

l 
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NOTE 

Number of modes of transverse vibrations 

Per unit volume with frequencies in the range ν and ν+d ν is = 
4πv2dv 

2 3 

t 

 

Where Ct is the velocity of transverse vibrations ( since 
transverse vibrations have two independent directions of 

4πv2dv 
motion 3 is multiplied by 2). 

t 
 

Total number of independent vibrations in the frequency range 

ν to ν+dν = 4π ( 
1
 

l 

2 
)v2dv 

t 
 

If V is the volume of one gram mole of the solid . then, 
 

 
Total number of vibrations 

vmax 

= ∫ 4πV ( 
0 

1 

Cl
3 

2 
)v2dv 

Ct 

 

= 4πv( 
1 

Cl
3 

+ 
2 

Ct
3 

γ 3 

). max  

3 

where νmax = νD is called Debye characteristic frequency. 
 
 

If there are N atom in volume V the possible vibrational 
degrees of freedom = 3N 

Hence 

 
3N = 4πv( 

1 

Cl
3 

+ 
2 
Ct
3 

γ 3 

). max  

3 

9N 
= 4πv( 

m 

1 

Cl
3 

+ 
2 

) 
Ct3 

 

The degeneracy associated with a range of frequencies from ν 
and ν+dν was calculated by Debye using vibration theory. It is 
found to be proportional to ν2+dν. 

dg ∝ v2dv 
 

dg = cv2dv where c = 4πv( 
1 

+ 
1 

) 
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dg = 4πv( 
1 

Cl
3 

+ 
2 

Ct
3 

).γ 2 dv 
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dg = 
9N

 
m 

 
v2d
v 

soilds 

 
NOTE 

 
 

Total number of vibrational degrees of freedom in a crystal consisting 
of N atoms will be 

dg = 
9N 

v2dv 
m 

 

dg = 
9N 

v2dv 
D 

 

According to Debye the total energy of a crystal is obtained by 
adding the energies associated with all the various vibrational 
frequencies property weighed by their degeneracies. 

 

 

Average energy of an oscillator is  <Ev> = 
hv 

+ 
hv

 
2 

Where hν/2 is the zero point energy. 

Total vibrational energy of a crystal 

γ max 

∫< Ev > 
0 

 
 

The first integrand on integration gives the total ZPE of the crystal, 
which is equal to 

 

 
vmax 

E = ∫ 
0 

( 
hv 

2 

 
+ 

(e hv 

hv 
.
 

KT −1) 

9Nv2dv 
3 ) 
max 

 

vmax hv 9Nv2dv 
vmax 9Nhv3dv 9Nh v4 v 9Nhv 

[ . = 
 

  

= ] max   =  max  
 

∫ 3 
0 max 

∫ 3 
0 max 2v3 4 0 8 
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9Nh 
vmax v3dv 

NOTE E = ∫ 
max 0 

 
 

 
put, 

 
x.KT 

 
 

x = hv 

 
 
 
KT v4 = 

 
3 

 
 

x4k 4T 4 
 

 

h4 

k 4T 4 
3
 

v = 4v dv = 
h 

.4x dx 
h4 

When v = v max and applying limits from 0 to x, we get 

9Nh (KT )4 hvmax   kt 
x3 

E = 
3 4 
m 

∫ ex −1 
dx

 

Let v o = v max be the Debye characteristic temperature defined 

mathematically as θD = 
hvD 

K 
= 

hvmax 

K 

Where θD is the Debye characteristic frequency. 

9RT 4 θ D   T  
x3 

E = 3 

D 
∫ x−1 

dx 
0 

This is integral can be evaluated in two special cases. 

1. At moderate and high temperature above 30K. and 
2. At very low temperature below 30K. 

 

Debye theory at moderate and high temperature 

9RT 4 θ T x3 
E = 3 

D 
∫ x−1 

dx 
0 
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following series expansion. For large value of T/θ the 
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3 3 4

θ

upper limit of the integration becomes small. First ex is 
expanded as a power series and divided it into x3 by long 
division. 
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x  − + − + ................ 

2 12 760 
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9RT 4 θD   T
 x3 x4 x6 

E = 3 

D 
∫ (x2 − 
0 

+ 
2 12 

− 
760 

+ )dx 

 

Upon integration 
 

E = 3RT (1− 

 
1 

(θ 
20 

 
 
T )2 + 

 
1 

(θ 
560 

 
 
T )4 − ) 

C = ( 
∂E 

) 
 

 
= 3R(1− 

1 
(θ T )2 + 

1 
(θ 

  

 
T )4 − ) 

V ∂T V 
20 560 

 

 
As T→∞ the heat capacity approaches 3R as predicted by Einsteins 
theory 

1. Cv is a function of θD/T only and a plot of Cv against T/θD or log 
T/θD should yield a curve that is the same for all the solids, the curves 
are called Debye curves. 

 
 
 

 
 
 

 
61 

Self-Instructional Material 

6 



 

∫ e 

e 

θ

D

θ e 

θ 

 
 

Unit – 4 
Heat Capacity of 
soilds 

 
 

NOTE 

2. From the curve it is evident that heat capacity of an element 
attains it’s classical 

value of 3R when T/θD is unity. 

3. From Debye equation it is possible to calculate the 
heat capacity of any solid element at all moderate and high 
temperatures if Debye characteristic temperature is known. 

 

Debye equation at low temperature below 30K 
 

 
9RT 4 θD   T  

x3dx 
E = 3 

D 

 

when T/θ→0, θ/T→∞ 

∫ x−1 

0 

 
 
 

 
9RT 4 ∞ x3dx 

Hence, 
 

∞ x3dx 
 

 

x−1 
0 

 
= 

π 4 

15 

E = 3 

D 
∫ x−1 
0 

 
 

∴ 
9RT 4  π 4 

 

E = 3 . 
15

 
 
 

Cv = ( 
∂E 

) 
∂T V 

 
upon differentiating of energy with respect to 

temperature 

Cv = 
∂ 

∂T 

9RT 4 4 
(
θ 3 .15 

.T ) 

 

 
Cv = 

9Rπ 4 
4 

 
 

θ 3 .15 
.T
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)3 
θD 

This equation is called Debye third power law. 

Heat Capacity of 
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NOTE 

 

 
1. According to this equation the atomic heat capacity of elements 

is proportional to T3 or Cv1/3. 
2. It is used to determine the heat capacity at very low temperature 

by extrapolation of the curve. This is used to determine the 
absolute entropies of substances using 3rd law of the 
thermodynamics. 

3. θD can be obtained from the slope of the curve obtained by 
plotting Cv vs. T3. 

 
 
 

 

 
 

4. When θD  is known, Debye characteristic frequency νD  or νmax  

can be calculated using the expression θD = hνD/ K. 
5. The most significant difference between the two theories i.e. 

Einstein and Debye theories is at low temperature. The debye 
expression for Cv approaches zero much less rapidly as T→O 
than does the Einstein’s predictions. 

 
 
 
 
 
 

 
63 

Self-Instructional Material 



 

 
 

Unit – 4 
Heat Capacity of 
soilds 

 
 

NOTE 

 
 
 
 
 
 
 
 
 
 
 
 
 

It is in this respect Debye theory is superior to Einstein theory. 
 
 

Limitations of Debye theory 

1. θD should be independent of the source of measurement but it 
is not. 

2. θD Vs T should be a horizontal straight line since θD is a 
constant and independent of temperature. But there are 
deviations in the case of Ag and Na I. 

 

3. In the case of metals there is electronic contribution to the heat 
capacity due to free electrons, which has not been taken into 
account 
Cv = R(T Tf ) , Tf –fermi temperature. 

 

4. Debye theory considers the solid to be a homogeneous 
continous elastic medium without any definite structure. It 
may not be exactly correct. 

 

4.3 Non equilibrium thermodynamics 

The branch of science dealing with the study of 
thermodynamic properties of the system which are not in 
equilibrium and involves transport process which are 
irreversible is termed as irreversible or non equilibrium 
thermodynamics. 

Onsager reciprocal relation 
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4.3.1 Postulates of local equilibrium Onsager 
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formulation 
 

 

Phenomenological laws, onsager reciprocal relations. 

Onsager theory is based on the principle of microscopic 
reversibility which states that under equilibrium conditions 
any molecular process and the reverse of this process will be 
taking place on the average at the same rate. According to 
onsager, the rates or velocities of the various types of 
processes like diffusion, flow o heat etc are linearly related to 
‘thermodynamic forces’. These are driving forces responsible 
for the transport processes. 

 
 

For example, temperature gradient is responsible for flow of heat, 
and a gradient of chemical potential is the driving force for diffusion. If J is 
taken as the rate of flow or flux and x as the force, the flux- force 
relationship is of the form 

J = LX 
 
 

Linear laws of this kind are called the phenomenological relations. 
At thermodynamic equilibrium for all processes, the forces Xk and hence the 
flows, JK in the system are zero. 

 
 

Consider a system in which a temperature gradient, X1 and also a 
concentration gradient X2 exist. There will be a flow of heat and flow of 
matter. Let J1 and J2 represent the rate of flow of heat and the rate of flow of 
matter respectively. If these takes place separately. J1 αX1 and J2 α X2. 
According to onsager, if both he processes occur simultaneously, near 
equilibrium the flows and fluxes are related by the phenomenologicals 
equations. 
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J1 = L11X1 + L12 X2 

J2 = L21X1 + L22 X2 

(1) 
 

(2) 
 

 
In these equations, 

‘L 11’ is the thermal conductivity coefficient which relates J1 and X1. 
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NOTE 

‘L 22’ is the diffusion coefficient which relates J2 and X2 

‘L 12’ and L21 the cross coefficients describes the coupling of the two 
irreversible processes 1 and 2. These are called drag co-efficient. 

‘L 12’ represents the heat flow arising from a concentration gradient. 

‘L 2i gives the flow of matter in response to a temperature gradient. 

Eqn 1 and 2 can be written as 

Ji = Lii Xi + Lik Xk 

Jk  = Lki Xi + Lkk Xk 

The coefficients LiK, LKi Lii Lkk are called phenomenological 
coefficients Lii Lkk are specialll referred to as the direct co-efficients. 
while Lik and Lki are referred to as cross coefficients. 

The rate of entropy production is given by equation 

∑ Jk X k> 0 

Substituting for the Jk from equations 
 

 
dis dt = L X 2 + (L + L ) X X + L X 2 > 0 

11 1 12 21 1 2 22 2 

 

 
This quadratic equation will be positive if both X1 and X2 have the 
same sign and becomes zero when X1 = X2=0. 

The phenomenological coefficients must satisfy the following 
conditions 

L11>0, L22>0 

(L + L )2 < 4L L (Qb2 = 4ac) 
 
 

This can be shown as 
 

L X 2 + (L + L ) X X + L X 2 > 0 
11 1 12 21 1 2 22 2 

 

 
 

Self-Instructional Material L { X 2 + ( 
L12 + L21 ) X X 

 

+ 
L22 X 2} > 0 

 

11 1 L11 
1     2 2 

11 
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21 22 



 

1 2 

11 

L { X 2 + 2aX X + a2 X 2 + 
L22 X 2 − a2 X 2} > 0 

 

11 1 1     2 2 L11  
Unit – 4 

where, 2a = 
L12 + L21

 

L11 

Heat Capacity of 
soilds 

 
L {( X 

 
+ aX )2 + 

L22 X 2 − ( 
L12 + L21 )2 X 2} > 0 

  

 
NOTE 

11 1 L11 2L11 

 

+ 2 + 4L L − (L + L )2 2    > → ( ) 
L11{( X1 aX 2 ) [ 11 

22 12 

4L 2 
21 ]X 2 } 0 3 

 
( X + aX )2 

11 

 
is always positive. From equation (3), it is seen that 

 
 
 
 

4L L − (L + L )2 
  11   22 12 21  must also be positive. 

4L 2 
11 

 
 

Otherwise  the  term within { } will have a sign which depends on the 
magnitude of X2 L 2 is positive. 

So (L   + L  )2 < 4L L . 
12 21 11 22 

 

Since the term within the brackets { } is positive L11>0. 

Since (L  + L  )2 > 0 , 4L L  >0, L > 0 
12 21 11   22 22 

 

 
Onsager showed that if fluxes and forces are properly chosen, the cross 
coefficients become equal 

i.e L12 = L21 or Lik = Lki → (4) 
 
 

This equation (4) is called onsager’s reciprocal relation. 
 

4.4 Check Your Progress 
 

1. Define Heat capacity. 
2. What are all the limitations of debye theory of heat capacity of 

solids. 
 

67 
Self-Instructional Material 

2 2

2 2 2
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NOTE 

3. Define Non equilibrium thermodynamics. 
 
 
 
 
 
 
 

4.5 Answers to check your progress questions 
 

1. Heat capacity is the quantity of heat required to raise 
the temperature of the whole of the substance through 1K. 
Even at absolute zero the atoms in a solid will be vibrating 
about their equilibrium positions. When the temperature is 
increased the amplitude of vibration increases and vibrational 
energy of the atoms of the solid is increased, it is the rate of 
change of vibrational energy of the solid with temperature that 
determine the heat capacity of solids is 

( 
∂Evib ) 
∂T v 

= Cv 

 

 
2. Limitations of Debye theory 
• θD should be independent of the source of 
measurement but it is not. 
• θD Vs T should be a horizontal straight line since θD is 
a constant and independent of temperature. But there are 
deviations in the case of Ag and Na I. 

 

• In the case of metals there is electronic contribution to 
the heat capacity due to free electrons, which has not been 
taken into account 
Cv = R(T Tf ) , Tf –fermi temperature. 

 

• Debye theory considers the solid to be a homogeneous 
continous elastic medium without any definite structure. It 
may not be exactly correct. 
3. Non equilibrium thermodynamics 
The branch of science dealing with the study of 
thermodynamic properties of the system which are not in 
equilibrium and involves transport process which are 
irreversible is termed as irreversible or non equilibrium 
thermodynamics. 
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4.6 Summary 
Heat capacity is the quantity of heat required to raise the temperature of the 
whole of the substance through 1K. 

Einstein theory of heat capacity of solids: Classical theories failed to 
explain its behaviour of variation of atomic heat capacities of solid elements 
with temperature due to the assumption that solid elements absorb heat 
continuously. Einstein used Quantum theory to explain all the 
experimentally observed regarding the variation of heat capacity with 
temperature. 

Debye theory of heat capacity of solids: Einsteins theory fails to describe 
adequately the behaviour of crystals near absolute zero. 

In order to determine the distribution of frequencies Debye disregarded the 
structure of the solid and he treated it as a homogeneous continuous elastic 
medium the vibrations of atoms are considered as equivalent to elastic 
waves propagated in the elastic medium with different frequencies. 

Non equilibrium thermodynamics: The branch of science dealing with the 
study of thermodynamic properties of the system which are not in 
equilibrium and involves transport process which are irreversible is termed 
as irreversible or non equilibrium thermodynamics. 

Onsager reciprocal relation: In thermodynamics, the Onsager reciprocal 
relations express the equality of certain ratios between flows and forces in 
thermodynamic systems out of equilibrium, but where a nation of local 
equilibrium exist. 

Reciprocal relations occur between different pairs of forces and flows in a 
variety of physical systems. 
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69 
Self-Instructional Material 



 

 
 

Unit – 4 
Heat Capacity of 
soilds 

 
 

NOTE 

 
 

4.7 Keywords 
Heat capacity 
a) The constant-volume heat capacity can be calculated from 
the molecular partition function. 
b) The total heat capacity of a molecular substance is the sum 
of the contributions of each mode. 
Einstein used Quantum theory to explain all the 
experimentally observed regarding the variation of heat 
capacity with temperature. 

In order to determine the distribution of frequencies Debye 
disregarded the structure of the solid and he treated it as a 
homogeneous continuous elastic medium the vibrations of 
atoms are considered as equivalent to elastic waves propagated 
in the elastic medium with different frequencies. 

Non equilibrium thermodynamics: Thermodynamic properties 
of the system which are not in equilibrium and involves 
transport process which are irreversible is termed as 
irreversible or non equilibrium thermodynamics. 

 
 

Onsager reciprocal relation: In thermodynamics, It’s 
explains the the equality of certain ratios between flows and 
forces in thermodynamic systems out of equilibrium, but 
where a nation of local equilibrium exist. 

 
 
 
 
 
 
 
 
 
 
 
 

4.8 Self-assessment questions and exercises 
 

1. Define Heat Capacity and explain the Debye theory of heat 
capacity of solids. 
2. Explain the Einstein theory of heat capacity of solids. 
3. Derive Onsager reciprocal relation. 
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4.9 Further Readings 
 

 

1. Statistical Thermodynamics, M.C. Gupta, Wiley 
Eastern, New Delhi,1990. 

 
2. Introduction to Statistical Thermodynamics, 
R.P.H.Gasser and W.G.Richards, World Scientific, Singapore, 
1995. 
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BLOCK – 2: 
QUANTUM CHEMISTRY 
Unit-5: Quantum Chemistry 
Structure 
5.0 Introduction 
5.1 Objectives 
5.2 One dimensional harmonic oscillator 
5.3 Rigid rotator 
5.4 Check your progress questions 
5.5 Answers to check your progress questions 
5.6 Summary 
5.7 Keywords 
5.8 Self-assessment questions and exercises 
5.9 Further reading 

 

5.0 Introduction 
 

 

There are several areas of chemistry that require a knowledge of 
quantum 
Mechanics for their explanation and understanding.Therefore 
quantum 
Mechanics at an elementary level is covered in several physics 
and chemistry.We will introduce some of the procedures and 
terminology of quantum mechanics and some of their 
applications.Here complete coverage of quantum mechanics and 
its applications given below. 

 

5.1 Objectives 
 

 

After going through this unit, you will be able to: 
• Understand about the one dimensional harmonic 
Oscillator. 
• Understand the concept of rigid rotator. 

 

5.2 One Dimensional Harmonic Oscillator 
 

 
 
 
 
 

Self-Instructional Material 

Vibration of a diatomic molecule can be described by a 
harmonic oscillator. Consider the simple harmonic motion 
of a single particle of mass m attached to a point and 
oscillating to and fro about its equilibrium position. 
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

 h ∂

  



Restoring force (f) acting on the particle is proportional to 
the displacement x from the equilibrium position. 

f ∝ x 

f = −Kx 

Unit -5 
Quantum 
Chemistry 

NOTE 
 
 
 

This expression is called Hooke’s law. A force of this type is called 
“harmonic” and the system obeying Hooke’s law is called simple 
harmonic oscillator. 

Potential energy V of such a particle is equal to the integral of this 
force over the distance it acts 

 

x x 

V = −∫ f .dx = −∫(− Kx).dx 
0 

 

 
= −− 

 

Potential energy V= + 
Kx2

 

2 

0 

 

Kx2 
x
 

 
 

2  0
 

Total energy of Harmonic oscillator Ĥ  = T̂ +V̂ 
 

ˆ  h2 ∂2 1 2  
 H = − 

 8π 2m ∂x2 
+ Kx  

2  
 

Schrodinger equation representing the system of one dimensional simple 
harmonic oscillator is 

 2 2 − + V ψ (x) = Eψ (x) 
 
 

upon rearranging 

 8π 2m ∂x2  

∂2 ψ ( )+ 
8π 2m  − 

1 
 

  

2 ψ ( ) = → ( ) 

∂x2 x h2  E 
Kx  x 0 1 

2  
 
 

α  = 
8π 2m β 2  = 

8π 2m K β = 
   Let ; h2 ; 

h2 2 
E 

8π 2mK 

2h2 
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β 

β 

x' 2 





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Quantum d 2ψ ( )+ 

8π 2m 
 

  

ψ ( )− 
8π 2m 

 
 

Kx2 

ψ ( ) = 
 

Chemistry 
dx2 

x
 h2 E x 

h2     .  2 
x 0 

NOTE 
d 2ψ ( )+ (α − β 2 

 
 

2 )ψ ( ) = → ( ) 

dx2 
x
 

Changing the variable to 

x x 0 2 

 

ξ = × x 

x = ξ  

 

2 

x2 = 
β 

 

Equation (2) becomes 

d 2ψ (ξ )  β 2ξ 2  (ξ ) β  + α − ψ  = 0 

dξ 2 β  β  β 
Dividing through out by β and multiply by √β 

 d 2ψ (ξ )+ 
 α − ξ 2 

ψ (ξ ) = 
 

 

→ ( ) 

dξ 2 

 

Eigen function: 

 0 3 
 

ψ (ξ ) is the solution of this equation. But it is not easy to 
find the solution of this second order differential equation. 
Hence this equation is compared with the second order 
differential mathematical equation. 

d 2u (  
 

' )+ (( + )− '2 ) ( ) = → ( ) 

dx'2 
x 

2n 1 x   u x' 0 4 

It is the mathematical equation. The solution of this  
equation is u(x`) and contains a polynomial in x`. 

 

u(x' )= (−1)n e 2  .
 dn 

e−x' 2

 

dx'n 

 

x' 2 

= (−1)n e 2  .e−x' 2

 

dn 
dx'n 

e− x' 2 

β

ξ
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 π

 π
 β 2 − 

βx 2 

 



− 
x ' 2 

= e 2 .Hn (x' ) 

where Hn(x′) is called Hermite polynomial of degree n and has real 
roots. 

Comparing equation (3) with (4), unnormalised solution of the 
equation representing simple harmonic oscillator system in its nth 
quantum state of vibration can be written as 

Unit -5 
Quantum 
Chemistry 

NOTE 

ψ (ξ ) = e 

 
−ξ 2 

2 .Hn (ξ ) 

where 

roots. 

Hn (ξ ) is called Hermite polynomial of degree n and has real 

 

 

ψ ( β x) − 
βx 2 

= e 2 

 
.Hn ( β x) 

 

Normalization of the wave function for the oscillator is carried out as 
follows 

 

ψ n (ξ )/ψ n (ξ ) = N = 

[− ∞,+∞] 
Hence normalized solution for the harmonic oscillator is 

 

1  β 2    − 
ξ 2

 ψ n(ξ ) =    .e 2 .Hn (ξ ) and 
 2n n!  

 
1 

 

ψ  (x) =    .e 2 .H ( β x) 
n  2n n!  n

 
 

H  (x) = (− 1)n .ex2 

. 
∂n  

e−x2

 

n ∂xn 

Hn ( β x)= Hn ( x ) 
 
 
 
 

5.3 Rigid Rotor 
 

ξ = β .x 

2n n! π 
β 
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NOTE 

Rigid Rotor consists of two spherical particles attached 
together and the particles are separated by a finite fixed 
distance. 

Consider a rigid rotor model consisting of two 
masses m1 and m2 at a distances r1 and r2 respectively from 
the centre of gravity of the system. Let ‘ν’ be the distance 
between the two masses and this distance remains 
unchanged during rotation and hence it is a rigid rotor 
model. 

 
 
 
 

 

 
Moment of inertia of a rigid rotor: 

 
 

Moment of inertia of the molecule about an axis 
perpendicular to the plane of the molecule is 

 

 

I = ∑m r 2 
 
 

To get ‘I’ in terms of ‘r’. Consider the following quantities. 
 

 

r = r1    + r2 

r2    = r  − r1 

 

m1r1 = m2r2 

I = m2r2r1 + m1r1r2 

= r1r2 (m1  + m2 ) 
m1r1    = m2r2 = m2 (r − r1 ) 
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r 1

2

r1 = 
m2 r ; 

m1 + m2 

r2 = m1 r 
m1 + m2 

Unit -5 
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m m2 2 m2m 2 I = ( 1    2  

) + ( 
2 

) r 2 

NOTE 

 
m m2 + m2m 

m1 + m2 

 
2 

m1 + m2 

I  =   1    2 1 2 r (m1  + m  ) 
2 

m m (m + m ) 2 

m m 2 2 
 

I = 1    2 1 
2 r = 1    2 r = µr (m1  + m  ) 2 (m1 + m2 ) 

 

 
Schrodinger wave equation for rigid rotor 

 
 

Total energy H = Kinetic energy + Potential energy 

H = T +V Potential energy ‘V’ is taken as zero 

Hence H = T + 0 

And Ĥ  = T̂ 

Let v1 and v2 be the velocities of the two particles of mass m1 and m2 

respectively then 

Kinetic energy of the rigid rotor 
 
 

T  = 
1 

m v2 + 
1 

m v2 
  

2   1  1 2 2   2 

 

Linear velocity ‘v’ is related to angular velocity ‘ω’ as ω= v/r , where ‘r’ 
is the radius. 

v2 = ω2r2 ; v2 = ω2r2 
1 1 2 2 

 
 

∴T = 
1 

m ω 2r 2 + 
1 

m ω 2r 2 
  

2   1 1 2 2 2 

2 

2
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  
 




 

 


 

 

1 ∂ 
 

1 ∂ 
 

2


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NOTE 

2 1 1 2 2 
 
 

T = 
1 ω 2 I 
2 

(Iω )2 L2 
T = = 

2I 2I  

where L is total angular momentum 
 

Ĥ  = T̂  = L̂2 

2I  

 
for a rigid rotor 

 

Schrodinger wave equation for a rigid rotor is 

Ĥψ (θ ,φ ) = Eψ (θ ,φ ) 
 

L̂2 ψ (θ φ) = ψ (θ φ) 
, E , 

2I 
 
 

In spherical polar co-ordinate system 
 

L̂2   = − h2  1 
 

 

∂ sin θ 
∂  

 
 

1 ∂2  
 

 

4π 2  sin θ ∂θ  ∂θ  sin 2 θ ∂φ 2  

Hence shcrodinger wave equation becomes, 
 
 

− h2 . 
 

 

 sin θ   
∂  

 
   

1 ∂2 ψ (θ ,φ ) = Eψ (θ ,φ ) 
4π 2 2I  sin θ ∂θ  ∂θ  sin 2 θ ∂φ 2  

 
 

upon rearranging we get 
 
 

 sin θ 
 

 

∂ ψ (θ ,φ ) + 
1
 

 
 

∂ ψ (θ ,φ ) + 8π 2I Eψ (θ ,φ ) = 0 

 sin θ ∂θ  ∂θ  sin 2 θ ∂φ 2  h2 

+

1 +
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This is Schrodinger wave equation representing rigid rotor. 
 
 

This equation contains two angular variables, θ and Ф and is 2nd 
order partial differential equation. This equation is separated into two 
equations, which are total differential equations by using the separation 
of variable procedure and solved. 

 
 

Separation of variables: 

Total wave function is written as the product of two wave functions, 
which are dependent separately on only one variable and independent of 
the other and inserted in the equation 

ψ (θ ,φ ) = θ(θ )φ(φ ) 

Unit -5 
Quantum 
Chemistry 

NOTE 

 
 1 ∂  ∂  1 ∂2  8π 2I   
sin θ ∂θ 

sin θ 
∂θ 

θ(θ )φ(φ )  + 
sin 2 θ ∂φ 2 

θ(θ )φ(φ )  + 
h2 Eθ(θ )φ(φ ) = 0 

  
φ(φ ) ∂  

 
 

  
∂  θ(θ ) ∂2

 
 

  

 
8π 2I 

 sin θ ∂θ 
sin θ 

∂θ 
θ(θ )  + 

sin 2 θ ∂φ 2 
φ(φ ) + 

h2 Eθ(θ )φ(φ ) = 0 
  

 

 
 

Multiply by sin 2 θ 
 

 

θ(θ )φ(φ ) 
 
 

sin θ ∂  ∂  1 ∂2 8π 2 I 2 

θ ∂θ 
sin θ 

∂θ 
θ(θ )  + φ ∂φ 2 

φ(φ ) + 
h2 E sin θ = 0 

(θ )  
sin θ   ∂  

 (φ ) 

∂  8π 2I 2 1 ∂2 

θ ∂θ 
sin θ 

∂θ 
θ(θ )  + 

h2 E sin θ = − φ ∂φ 2 
φ(φ ) 

(θ )   (φ ) 

Left hand side of this equation contains the function of θ and right 
hand side contains the terms, which depends only on the variable Ф. 
Both sides are equated to a common constant m2. 
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 

sin θ ∂  θ ∂ θ  + 
8π 2I 2 θ = 2 → ( ) 
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θ(θ ) ∂θ 
sin (θ )  

 
E sin m 1 

h2 

NOTE This is called θ equation. 

− 
1 

φ(φ ) 

∂2 

∂φ 2 
φ(φ ) = m2 → (2) 

This equation is called Ф equation. 

Solution of Ф equation: 

Upon rearranging equation (2) 

 

 
∂2 

φ
 

∂φ 2 (φ ) 

 
 
 
= m2φ(φ ) 

 
 
 

∂2 

φ
 

 
 

∂φ 2 (φ ) + m2φ(φ) = 0 

 
 
 

This equation is called Ф equation. 

φ(φ ) is the solution of this equation. 
 

φ(φ ) = Ce±imφ 

 

This is an acceptable solution provided ‘m’ is an integer 
 
 

angle. 

φ(φ ) = φ(φ + 2π ) 

 
e±imφ  = e±im(φ + 2π ) 

Since φ is an 

e±imφ  = e±im(φ ) − e±im(2π ) 
 

e±im2π   = 1 

Note: 

∂θ 
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2π 

0

(eiθ = cosθ + i sin θ ) 
cos(2mπ )+ isin (2mπ ) =1 

This is true only if ‘m’ can take up 0, ±1, ±2, ±3 etc. 

This function φ(φ ) should be normalized. 
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NOTE 

φ(φ ) /φ(φ ) = 1 

[0, 2π] 
 

2π 

∫φ∗
(φ ).φ(φ )dφ = 1 

0 

(φ(φ ) = Ce±imφ ) 
 

2π 

∫Ce±imφ .Ce±imφdφ = 1 
0 

 

2π 

C2 ∫dφ = 1 
0 

 

C2[φ]2π   = 0 

C 2 (2π − 0) = 1 

C 2  = 
1
 

2π 

C =  
1 

2π 
 
 

Normalised  solution  of φ equation is 

0,1,2,3………. 

Solution of θ equation: 

φ(φ ) =
 1 

e±imφ where m = 

 
 

The rearranged θ equation is that is equation (1) is multiplied by θ(θ) and 
divided by sin2θ. 

1 ∂  m2  
sin θ ∂θ 

θ(θ ) +  β − 
sin 2 θ 

θ(θ ) = 0
 

  
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l
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NOTE 

θ equation is compared with Legendre equation in 
mathematics. Associated Legendre function is the solution 
of the mathematical equation. The normalized solution of a 
equation is 

 m ( ) 
θ(θ ) = Pl cosθ 

 

Pm (cosθ ) is a polynomial in cos θ of degree l and order m . 
 

Hence normalised solution of the schrodiner wave equation 
representing rigid rotor is 

ψ (θ ,φ ) = θ(θ ) . φ(φ ) 
 

l ± m l ± m l ± m 
 

 

= (2l + 1)(l − m)!
Pm (cosθ )   1    

e± imφ 

2(l + m)! l 
 

where ‘l’ is a positive quantity. Two quantum conditions 
are 

l = 0, 1, 2, 3…………. 

m = 0, ±1, ±2, ±3… ......... ±l 

This solution is called spherical harmonics and is 
represented as 

γ (θ ,φ ) = θ(θ ).φ(φ ) 
l + m 

 
 

A few spherical harmonics are 
 
 

l m γ (θ ,φ ) = (2l +1)(l − m)!
Pm (cosθ )    1    

e±imφ 

l ± m 
 
 

0 0 γ (θ ,φ ) = 
2 

. 

2(l + m)! l 

 
= 

0,0 2 

(2l + 1)(l − m)! 
2(l + m)! 

2π 

2π 

1 

2π 
1 

2 π 
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 



2

 

1 0 γ (θ ,φ )1,0 = cosθ Unit -5 
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Chemistry 

Energy of Rigid Rotor: 

Comparing the two equation 
NOTE 

(1 − x2 )∂2u(x
) 
 

 

− 2x ∂ u(x) + l(l +1)− 
m 

u(x) = 0 
 

 

 

when 
 
x = cosθ 

∂x2 ∂x  1 − x2  

 

 
1 ∂ ∂  m2  

sin θ ∂θ 
sin θ 

∂θ 
θ(ϑ ) +  β − 

sin 2 θ 
θ(ϑ ) = 0 

  
 
 

we get β = l(l +1)  
= 

8π 2 IE = ( ( + )) 
 l l 1 

h2 

 
 

 
Erot = 

l(l + 1)h2 
8π 2I 

 

where l = 0,1,2 

 
 
 
 

1. Energy of the rigid rotor depends on the values of l and 
independent of ‘m’. 

2. Energy of rigid rotor is quantized. 
3. Energy increases with increases in ‘l’ value. 

 

5.4 Check Your Progress 
 

 

1. What is meant by Hooks law? 
2. What is wave function? 

 

5.5 Answers to Check Your Progress Questions 
 

3 

2 π 
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NOTE 

1. Hooke’s law is named for Robert Hooke,According to the 
Hooke’s law ,for a particle executing simple harmonic motion 
in one direction, the restoring force F is directly proportional to 
the displacement x from the equilibrium position 

 

 
The negative sign indicates that the displacement x and the 
restoring force F are in opposite directions.K is proportionality 
constant called the force constant. 

2. The eigenfunctions of a quantum mechanical operator depend 
on the coordinates upon which the operator acts; these functions 
are called wavefunctions. 

 

5.6 Summary 
 

• According to classical mechanics, the state of a system is 
specified by giving the position and velocity of every particle in 
the system. Consider a single particle withoutany internal 
structure so that it cannot rotate or vibrate. 
• If it can move in three dimensionswe can specify its position 
by the three Cartesian coordinates x, y, and z. 
• These three coordinates are equivalent to a position vector that 
reaches from the origin of coordinates to the location of the 
• particle. 
• The Cartesian coordinates x, y, and z are called the Cartesian 
components of the position vector r .A vector can also be denoted 
by listing its three Cartesian components inside parentheses, as in 
(x, y, z) 
• In order to show how Newton’s laws determine the behavior of 
a particle, we apply them to a harmonic oscillator, which is a 
model system designed to represent a mass attached to a 
stationary object by a spring, A model system is designed to 
imitate a real system, but is defined to have simpler properties so 
that it canbe analyzed more easily. 
• Let the horizontal coordinate x of the mass equal zero at its 
equilibrium position and assign it to be positive if the spring is 
stretched and negative if the spring is compressed. 

 

5.7 Keywords 
 

 

• Harmonic oscillator: A System which,when displaced from its 
equilibrium position,experiences a restoring force proportional to 
the displacement according to Hooks Law. 
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• Rigid Rotator: The rigid rotator is a simple model of a rotating 
diatomic molecule. 

 
 

5.8 Self-assessment questions and exercises 

Unit -5 
Quantum 
Chemistry 

NOTE 
 

 

1. The frequency of vibration of a 1H35Cl molecule is 
8.966 × 1013 s−1. 
a. What would the frequency be if the chlorine atom were infinitely 
massive? 
b. What would the frequency be if the hydrogen atom were infinitely 
massive? 

 
2. What do you mean rigid rotator? Write a note on rigid rotator in a 
plane. 
3. Apply Schrödinger wave equation to a system of rigid rotor and 
solve the equation 

 

 
5.9.Furthur readings 

 

 

1. Quantum  Chemistry, I.N. Levine, Allyn and Bacon, Boston, 
1983. 
2. Quantum Chemistry, R.K.Prasad, Wiley stern, New 
Delhi,1992. 
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Unit -6 
Quantum 
Mechanical 
Treatment 

NOTE 

 
 

Unit- 6 Quantum Mechanical 
Treatment 

 

6.0 Introduction 
6.1 Objectives 
6.2 Quantum mechanical treatment 
6.3 Hydrogen like atoms 
6.4 Pauli’s exclusion principle 
6.5 Slater determinant 
6.6 Approximation methods 
6.7 Variation method 
6.8 Time independent perturbation 
6.9 SCF methods 
6.10 Check Your Progress 
6.11 Answers to check your progress questions 
6.12 Summary 
6.13 Keywords 
6.14 Self-assessment questions and exercises 
6.15 Further reading 

 

6.0 Introduction . 
 

 

In this unit we can elaborately understand Quantum mechanical treatment 
for radial and angular wave function and hydrogen atom like atoms. 

 

6.1 Objectives 
 

After going through this unit, you will be able to: 
• Understand the concept of Quantum mechanical treatment. 
• Understand pauli’s exclusion principle and slater determinant. 
• Learn about the Approximation methods. 

 

6.2 Quantum mechanical treatment 
 

Hydrogen atom is made up of a proton and an electron revolving the 
nucleus. 

The potential energy of the electron is due to the electrical force 
of attraction between the electron and the nucleus. 

 
∴V = − Ze2 

r 

Therefore Schrodinger equation for the hydrogen like atom can be 
written as 
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 + 

   

   + Ze2  

  

2 E 

  

+
h  

 



 

∇2ψ + 
8π 2m ( 

h 
− V )ψ = 0 

 
Unit -6 
Quantum Mechanical 

∇2ψ + 8π 2m  E 
 

 

2  ψ = 0 
 

 

Treatment 

2  r  NOTE 
 

This can be solved by transforming the Cartesian co-ordinates x, y, z 
into spherical polar co-ordinates r, θ, Ф. 

 
 

∂2 

+ 
∂2 

 
 + 

∂2 = ∇2 = 1 ∂  r2 ∂  +  1∂  sin θ  ∂  + 
1 ∂ 

 

∂x2 ∂y2 ∂z
2 r2 ∂r 


 ∂r 

 
r2 sin θ ∂θ 


 ∂θ 


 r2 sin 2 θ ∂φ 2 

 
1 ∂   

 
 

2 ∂ψ  + 
1 

 
 

∂ sin θ ∂ψ   
 

 

1 ∂2ψ 8π 2m  E 
 

 

ψ = 0 → (1) 
 

 

r2 ∂r  ∂r  r2 sin θ ∂θ  ∂θ  r2 sin 2 θ ∂φ 2 2    r  
 
 

Separation of variables:  
ψ = R(r).θ (θ ).φ(φ)→ (2) 

 

 
Substituting (2) in equation (1), we get 

 

 

1 ∂  2 θ (θ )φ(φ ) ∂ ( ) +  1 ∂  θ ( )φ(φ ) ∂ θ (θ ) + 
R(r).θ (θ ) ∂2 

φ(φ ) 
 

r2 ∂r 
 r .

 8π 2m  

. 
 Ze2  

. 
∂r 

R r  
r2 sin θ ∂θ 

sin
 

.R r . 
∂θ

  
r2 sin 2 θ 

. 
∂φ 2 

+ 
h2  E + 

 
R(r).θ (θ )φ(φ ) = 0 

r  
 

Multiply by r2, 

θ (θ )φ(φ ) ∂  2 ∂ 
 

( ) + 
R(r).φ(φ ) ∂  

 
θ ∂ θ (θ ) + 

R(r).θ (θ ) 
 ∂2 

φ(φ ) 
 . 

∂r 
 r . 

∂r 
R r  sin θ ∂θ 

sin 
∂θ  

sin 2 θ 
. 

∂φ 2 
 

8π 2mr2     
Ze2  

+ 
h2  E + 

 
R(r).θ (θ )φ(φ ) = 0 
 

Divide by R(r).θ (θ ).φ(φ) 

Ze 

r + 

h

2

r
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 

 + 

 

 + 

 

r     + 

r     + 

 

 

 




 

h 


   1 ∂  2 ∂ ( ) +  1 ∂  θ ∂ θ (θ ) +  1 
 

∂2 

φ(φ ) 
 

Unit -6 R(r ) ∂r 
 r

 . 
∂r 

R r  θ (θ )sin θ ∂θ 
sin 

∂θ  φ(φ )sin 2 θ 
. 
∂φ 2 

Quantum 8π 2mr2  E 
 

 

Ze2  = 0 
 

 

Mechanical 
Treatment 

NOTE 

2  r  

Multiply by sin2θ, 
 

sin 2 θ ∂  2 ∂ 
 

 

( ) + 
sin θ ∂  θ ∂ θ (θ ) + 1 

 
∂2 

φ(φ ) 
 

R(r ) ∂r 
 r

 
. 

∂r 
R r  θ (θ ) ∂θ 

sin 
∂θ  φ(φ ). 

∂φ 2 
8π 2mr2 sin 2 θ 
 E 

 
 

Ze2  = 0 
 

 

2  r  
 
 
 sin 2 θ ∂  2 ∂   sin θ ∂   ∂  8π 2mr2 sin 2 θ   Ze2  1 ∂2φ(φ ) 

R(r) ∂r 
 r . 

∂r 
R(r) + 

 θ (θ ) ∂θ 
sin θ

 
θ (θ ) + 

∂θ  h2 
 E + 
 

 = − 
 φ(φ ). 

 
 

∂φ 2 
 
 

Left hand side of the equation contains the variables r and θ 
and right hand side contains the variables Ф. Each sides of the 
equation is equated to a common constant say m2 such that 

−   1     ∂2   

φ(φ ) = 2 
 

φ(φ ). 
∂φ 2 

m
 

 

∂2 

∂φ 2 
φ(φ )+ m2φ(φ ) = 0 → (3) 

 

The equation (3) is called Ф equation. 
 

sin 2 θ ∂   
 

 

2. 
∂ R(r) + sin θ ∂ sin θ ∂ θ (θ ) + 

 
 

8π 2mr2 sin 2 θ  E 
 

 

Ze2  = m2 
 

 

→ (4) 
R(r) ∂r  ∂r  θ (θ ) ∂θ  ∂θ  2  r  

 
 

Divide the equation by sin2θ and upon rearranging 
 

1 ∂   
 

 

2. 
∂ R(r) + 

1
 

∂ sin θ ∂ θ (θ ) + 
 

 

8π 2mr2  E 
 

 

Ze2  m2 = 
 

  

R(r) ∂r  ∂r  θ (θ )sin θ ∂θ  ∂θ  2  r   sin 2 θ 

+
h

+ 
h 

r

h 
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r   +   

  

 

r   + 

r   + Ze2  

( ) 

h 


2

 

h 


 

1 ∂   
 

 

2. 
∂ R(r) + 8π 2mr2  E 

 
 

Ze2  m2 1 = − 
 

  

∂ sin θ ∂ θ (θ ) 
 

 

R(r) ∂r  ∂r  2  r   sin 2 θ θ (θ )sin θ ∂θ  ∂θ  Unit -6 
Quantum Mechanical 
Treatment 

Left hand side as well as right hand side of the equation contains only one 
variable and hence both must be equated to a common constant β. 

NOTE 

m2 

sin 2 θ 
−  1 ∂ 

sin 
θ (θ )sin θ ∂θ 

θ ∂ 
∂θ 

θ (θ ) = β 
 

− 
  1 ∂ 

sin 
θ (θ )sin θ ∂θ 

θ ∂ 
∂θ 

θ (θ ) = β − 
m2 

 
 

sin 2 θ 

Multiplying by θ (θ ) and rearranging 
 

1 ∂ 
sin θ 

∂ θ (θ )+  β − 
 

  

m 
θ (θ ) = 0 → (5) 

 
 

sin θ ∂θ ∂θ  sin 2 θ  
 

This equation is called θ equation 
 

1 ∂   
 

 

2. 
∂ R(r ) + 8π 2mr2  E 

 
 

2   = β 
 

 

R(r ) ∂r  ∂r  2  r   
 

Multiplying by R(r)/r2 
 

1 ∂   
 

 

2. 
∂ R(r) − 

β R(r)+ 8π 2m  E 
 

 

R(r) = 0 → (6) 
 

 

r 2. ∂r  ∂r  r 2 2  r  
 

This is called radial equation or r equation. 
 
 

Solution of Ф equation: 

Ф equation is 

 
 

 
∂2 

∂φ 2 

 
 
 
φ(φ )+ 

 
 
 
m2φ(φ ) = 0 

 

The solution of Ф equation is 
 
 
 

±imφ 

φ φ = Ce 

± m 

Ze 

h 
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0

  e 

  

 

l



 

 
Unit -6 
Quantum 
Mechanical 
Treatment 

NOTE 

φ(φ )/φ(φ ) 
[0,2π ] 

±imφ 

Ce / Ce 

[0,2π ] 

= 1 
 
 

±imφ 

 
 
 
 

2π ±imφ 

= ∫Ce 
0 

 
 
 
 

 
±imφ 

.Ce = 1 

 

 
= C 2 

2π 

∫ dφ =C 2[φ]2π   = 1 
0 

 
 

C 2 2π = 1 
 
 
 
 
 

Normalised solution of Ф equation is 

C 2 =  
1
 

2π 

C =  
1 

2π 

 

φ(φ ) = 1 
 

2π 

±imφ 

± m 

Solution of θ equation: 

The θ equation is 
1 ∂ 

sin θ 
∂ θ (θ )+  β − 

m
 

2 
 

  

θ (θ ) = 0 

sin θ ∂θ ∂θ  sin 2 θ  
 

Associated Legendre function of degree l and order m in the 
variable cos θ represented as 

equation. 

Pmcos θ is the solution of θ 

Normalised solution of θ equation 

θ (θ ) = (2l + m)(l − m)!
Pm cosθ 

 
l ± m 

2(l − m)! l 

The product of solutions of θ and Ф equation is spherical 
harmonics that is 
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  
na 

 2z 
3 
4(n − l −1)! 

 0  2n(n + l )3
 

r   +  ( ) 

l      2l +1(  ).p 

 

 

Yl ± m (θ ,φ ) = θ (θ ).φ(φ ) 

l ± m l ± m 

Unit -6 
Quantum Mechanical 
Treatment 

NOTE 
Solution of radial equation: 

Radial equation is 

1 ∂   
 

 

2. 
∂ R(r) − 

β R(r)+ 8π 2m  E 
 

 

Ze2  R r = 0 
 

 

r2. ∂r  ∂r  r2 2  r  

The solution of this equation is R(r). 
 

R(r ) = 

 
 
 

− 
 p 
2 

n+l 

 

 where = 
2zr , = 

h2  , and 2l +1 ( )  is the associated Laguerre 
p 

na0 

a0 4π 2e2µ 
Ln+l p 

polynomial. 

Hence the total solution of the wave equation is 

ψ (r,θ,φ) = R(r),θ (θ ),φ(φ) 
n, l, ±m n, l  l±m l±m 

−  
 p 

 
 
 
 
 
 

1 ±imφ 
ψ (r,θ ,φ ) = e  2 .pl .L2l +1(p). 

  

Pm cosθ.  e 
n,l ,l ± m 

 
 

6.3 Hydrogen like atom 

n+l l 2π 

The co-ordinates of electron of Helium atom can be represented as 
 
 
 
 
 
 
 
 

Hamiltonian operator of Helium atom is 

 2z 
3 
4(n − l −1)!   

na  0  2n(n + l )3
 

(2l +1)(l − m)! 
2(l + m)! 

h

e
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2 

1

1

H = − 
1 ∇2 − 

1 ∇2 − 
2 − 

2 + 
1
 

    

in au. 
 

Unit -6 
2 1 2 2 r r 

 

r1,2 

Quantum 
Mechanical 
Treatment 

NOTE 

For the ground state of Helium atom, the electronic 
configuration is 1s2. The overall wave function will be given 
by a slater determinant. 

ψ 0 = 
 

 

1S(1)1S(2) 
 

this on expansion may be written as 

ψ   = 
  1  

1S   1S  [α   β − β  α ] 
0 (1) (2) (1)   (2) (1)   (2) 

 

According to variation method, the energy, E based on the 
approximate wave function is always higher than true energy 
Eo of the ground state. 

E = ψ0 / H /ψ0 

 

= 
1 

1S( 1S  H S /S α  β − β  α /α  β − β α 
2 1) (2) (1) (2) (1)   (2) (1)   (2) (1)   (2) (1) (2) 

 

= 
2 

1S(1)1S(2) H S(1) /S(2) .2 
 

E =  1S(1)1S(2) H S(1) /S(2) 
 

Hamiltonian for Helium atom is 

H = H + H + 
1
  

1S( 1S 
(1) (2) r1,2 

1) (2) 

 

E = 1S(1)1S(2) H(1) + H(2) 
+ 1 

1S 
r1,2 

(1)1S(2) 

 
E = 1S( 1S  H 1S 1S + 1S 1S  H 1S 1S + 1S  1S 

 1 
1S 1S 

1) (2) (1) (1) (2) (1) (2) (2) (1) (2) (1) (2) 
1,2 

(1) (2) 

1 

2 

r 

2
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π 

3

 

E = 1S(1) / H(1) /1S(2) 1S(2) 1S 
 
(2) + 1S(2) / H(2) /1S(2) 1S(1) 1S(1) + J 

Unit -6 
Quantum Mechanical 
Treatment 

 

E = E1S (1) + E1S (2) + J 
NOTE 

 

 
 
 

J is called coulomb integral. 

J = 1S(1) /1S2 
  1 

1S
 

r1,2 
(1)1S(2) 

In a two electron atom, the average potential experienced by an 

electron varies between  − 
1
 

ri 

and − 
2 

that is it depends on the effective 
r i 

nuclear charge ‘Z’. The best value of Z’ will be determined by the 
variation principle. 

The wave function of 1S orbital appropriate to this effective nuclear 
charge Z′ is 

 

1s = 
(Z ')2  

.e−Z 'r 
 

The result of calculation then leads to 

E=-Z′2 – 2(2- Z′) Z′+5/8 Z′ 

=Z′2-27/8 Z′ 

The value of Z′ which minimizes the energy is found by differentiating E 
with respect to Z′ 

 
Setting 

∂E 

∂Z ' 

 
= 0 , we get 

 
 

2Z ' − 
27 = 0 
8 

Z = 
27 = 1.69 
16 

∴ E = −2.8476(a.u) 
(1a.u = 27.2ev) 
E = −77.48eV . 
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2 

2 

 
Unit -6 
Quantum 
Mechanical 
Treatment 

NOTE 

 
 

6.4 Pauli’s Exclusion Principle  
Pauli’s exclusion principle states that “The total wave 
function of electron must be antisymmetric under the 
interchange of any two electrons or no two electrons in one 
and the same orbitals can have all the fact quantum numbers 
same”. 

The four possible product combinations of the orbital and 
spin wave function for He atom in 1s2 state is 

(1S(1)1S(2) )(α(1) /α(2) ) 
(1S(1)1S(2) )(β (1) / β(2) ) 

S×S=S 

S×S=S 

(1S(  1S )  1   (α   β + α   β   ) S×S=S 
1) (2) (1)   (2) (2)   (1) 

 
(1S(  1S )  1   (α   β −α   β   ) S×A=A 

1) (2) (1)   (2) (2)  (1) 
 

Symmetric (+)  × symmetric (+) or 

Antisymmetric (-) × Antisymmetric (-) is symmetric (+),  
but 

Symmetric (+) × Antisymmetric (-) is Antisymmetric (-) 
 
 

Complete description of an electron is given by the spin 
orbital wave function 

Ψ(r, s) = Ф(r) η(s) 

Ф(r) is the orbital wave function, which is a function of 
the position variable and η(s) is the spin function involving 
spin variable. 

Spin orbital wave function is obtained by multipling 
each of the orbital function with those of the spin functions. 

Ψ(r,s) = Ф(r) η(s) 



93  

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

ψ = (φ (1).φ (2)+ φ (1).φ (2))(α  .α ) 
1 2 2 1 (1) (2) Unit -6 

S×S = S 

ψ = (φ (1).φ (2)+ φ (1).φ (2))(β .β ) 
Quantum Mechanical 
Treatment 

NOTE 
1 2 2 1 (1) (2) 

S×S = S 

ψ = (φ (1).φ (2)+ φ (1).φ (2)).(α β 
 

+ β  α ) 
1 2 2 1 (1)   (2) (1) (2) 

 

S×S = S 

ψ = (φ (1).φ (2)+ φ (1).φ (2)).(α β − β  α )  S×A = A 
1 2 2 1 (1)   (2) (1) (2) 

 

ψ = (φ (1).φ (2)− φ (1).φ (2))(α  .α ) A× S = A 
1 2 2 1 (1) (2) 

 

ψ = (φ (1).φ (2)− φ (1).φ (2))(β .β ) A× S = A 
1 2 2 1 (1) (2) 

 

ψ = (φ (1).φ (2)− φ (1).φ (2)).(α β + β  α ) A× S = A 
1 2 2 1 (1)   (2) (1) (2) 

 

ψ = (φ (1).φ (2)− φ (1).φ (2)).(α β − β  α ) A× A = S 
1 2 2 1 (1)   (2) (1) (2) 

 

Of the eight possible combinations only four combinations are 
antisymmetric and they are accepted according to Pauli’s exclusion 
principle. 

ψ  (r, s) = (φ (1).φ (2)+ φ (1).φ (2)).(α β  − β α )→ (1) 
A 1 2 2 1 (1)   (2) (1) (2) 

ψ  (r, s) = (φ (1).φ (2)− φ (1).φ (2))(α .α )→ (2) 
A 1 2 2 1 (1) (2) 

ψ  (r, s) = (φ (1).φ (2)− φ (1).φ (2))(β .β )→ (3) 
A 1 2 2 1 (1) (2) 

ψ  (r, s) = (φ (1).φ (2)− φ (1).φ (2)).(α β + β α )→ (4) 
A 1 2 2 1 (1)   (2) (1) (2) 

To prove Pauli’s exclusion principle consider equation (4) 
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1 

2 

1 

2 

( ) A

 

ψ  (r, s) = (φ (1).φ (2)− φ (1).φ (2)).(α β + β  α ) 
Unit -6 
Quantum 

A 1 2 2 1 (1)  (2) (1) (2) 

Mechanical 
Treatment 

NOTE 

This can be written in the Slater determinantal form. 

= (φ (1).φ (2)α  β + φ (1).φ (2)β α − φ (1).φ (2)α  β − φ (1).φ (2)β  α ) 
1 2 (1)   (2) 1 2 (1)   (2) 2 1 (1)   (2) 2 1 (1) (2) 

= 1 (φ (1).φ (2)+ φ (1).φ (2)− φ (1).φ (2)− φ (1).φ (2)) 
1 2 1 2 2 1 2 1 

ψ (r, s) = 1 φ1 (1) φ2 (1) 
+ 

1 φ1(1) φ1(2) 
2 φ1(2) φ2(2) 2 φ (1) 

2 φ2(2) 

When both the electrons are in the same orbitals 

Ф1 = Ф2. Therefore the determinant becomes 

ψ 

when α = β 

(r, s) =  1 φ1 (1) 
2 φ1(2) 

φ1(1) + 
φ1(2) 

φ1(1
) 
φ1(1
) 

φ1(2) 
φ1(2) 

ψ  (r , s) = 
  1   φ1(1) 

2 φ1 2 

φ1(1) + 
φ1(2) 

φ1(1
) 
φ1(1
) 

φ1(2) 
φ1(2) 

When two rows of the determinant or two columns of a 
determinant are equal then the determinant vanishes i.e. it is 
equal to zero. The wave function also vanishes. Hence no 
two electrons in one and the same orbital can have all the 
four quantum numbers same. Pauli’s exclusion principle is 
proved. 

2 

1 

2 

1 

2 

A

A
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6.5 Slater determinant 

 
In order to construct antisymmetric wave function for a multi-electron 

atom, the increase in the number of electrons increases the number of 
terms in such large proportions [for ex: 5! i.e 120 terms for an atom with 5 
electrons only]. We must find an abbreviated form to represent a wave 
function. This can be done by writing it in the form a determinant in 
which the spin-orbitals are the elements, each row in the determinant is 
labeled with an electron and each column with a spin orbital. 

The normalized wave function for a three electron atom is written as 

 
Unit -6 
Quantum Mechanical 
Treatment 

NOTE 

 
 
 

ψ = 
1

 
A(1) 
A 

B(1) 
B 

C(1) 
C 

 
→ (1) 

− 6 (2) (2) (2) 
A(3) B(3) C(3) 

 
 

For an n electron atom 
 
 

 
ψ = 

1
 

 
A(1) B(1) 
A B 

 
...... 
...... → (2) 

− n! (2) (2) 
A(n ) B(n ) ....... 

 
 
 

The antisymmetry of equation (1) or equation (2) as well as Pauli’s 
principle are guaranteed by two properties of determinants. 

 
 

(1) If two rows (or) two columns of a determinant are interchanged , 
the resulting 
determinant is just the negative of the original one, i.e 
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Unit -6 

 A(1) B(1) 

A(2) B(2) 

C(1) 

C(2) 

 
= - 

A(2 ) 

A(1) 

B(2 ) 

B(1) 

C(2 ) 

C(1) 

Quantum  A(3) B(3) C(3)  A(3) B(3) C(3) 
Mechanical        

Treatment        

NOTE 
(2) If any two rows or two columns of a 
determinant are the same, the determinant 

vanishes. 

For example: 

The ground state antisymmetric wave function for He 
atom in the determinantal form and to prove that the two 
electrons cannot have the same spin-orbital. 

 
 

ψ −  = 1S(1)1S(2) (α(1)β(2) − α(2)β(1) ) 
 
 
 
 

= 1S(1)α(1).1S(2)β(2) − 1S(1)β(1).1S(2)α(2) 
 
 

= 
1S(1)α(1) 

1S(2)α(2) 

1S(1)β(1) 

1S(2)β(2) 

 
→ (3) 

 
 

where 1S(i)α(i) is the spin-orbital of electron i (i = 1, 2) 
 
 

If both electrons have the same spin-orbitals, the determinant 

= 
1S(1)α(1) 

1S(2)α(2) 

1S(1)α(1) = 0 
1S(2)α(2) 

 
 

With increasing number of electrons, even the determinant (2) 
will have large size and further abbreviation is necessary. This 
is done by using a bar over the orbital which has β spin, 
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1 

3! 

absence of a bar will indicate α spin. Thus the determinant 
wave function for Li atom is 

 

Unit -6 
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1S(1) 1S(1) 2S(1) 
 

 ψ   = 1S 1S 2S 
NOTE 

− (2) (2) (2) 

 
 

6.6 Approximation methods 

1S(3) 

 
 

1S(3) 2S(3) 

Need for approximation methods: 

1. Schrodinger wave equation cannot be solved exactly in many electron 
atoms because the presence of more than one electron introduces electron 
repulsion terms (e2/rij), where rij is the distance between the two electrons. 
This rij term depends on φ and θ coordinates. The separation of variables  
is not possible and is very difficult. 

2. Again the Schrodinger wave equation cannot be solved exactly for one 
electron systems, whose potential field is not spherically symmetrical e.g. 
Hydrogen atom subjected to electric or magnetic field. 

Hence to obtain the solution of the wave equation for the above 
systems approximate methods are used. The two commonly used methods 
are 

(i) Variation method 

(ii)  Perturbation method 

6.7 Variation Method 

Variation method is an approximation method. It is used to those systems, 
which differ much from the systems, for which exact solution is known. 
In this system the wave functions can be guessed based on physical and 
chemical combinations and the energy of the system is calculated by 

〈ψ Ηψ 〉 
E = 

〈ψ ψ 

 
when ψ is normalized, then 

 

E = 〈ψ Ηψ 〉 where Hˆ is the complete Hamiltonian of the system. 
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Variation theorem states that “if ψ be the normalized trial 
wave function satisfying the boundary conditions of a 

system, whose Hamiltonian Ĥ has a discrete  eigen 
spectrum”. 

Then 

〈ψ Ηψ 〉 ≥ E0 

where E0 is the lowest exact Eigen value of Hˆ . 

The wave function ψ is called trial variational function and 

the integral 〈ψ Ηψ 〉 is called the variational integral. The 

energy calculated by variation method will always be greater 
than the true energy E0 i.e. the lowest eigen value of Hˆ . 

 

 

Proof of variation theorem i.e. proof for 〈ψ Ηψ 〉 ≥ E0 
 

Let φ0,φ1,φ2,φ3…..be the set of normalized and mutually 
orthogonal eigen functions of Hˆ with discrete eigen values 
E0,E1, E2, E3 ,etc. such that 

Ηφi = Εiφi i = 0, 1, 2, 3….. 
 

Let ψ be a normalized trial variational function. Let ψ be 

expanded in terms of the orthogonal set of functions i.e. ψ = 

∑i 
Ciφi 

Multiply by ψ * and integrate over all space, 
 

ψ ψ = ∑i 
Ciφi ∑i 

Ciφi 

= ∑C2 φ φ 
 
 

ψ ψ  = ∑ C2 = 1 [Qψ is normalized ψ ψ = 1] 
 
 

Considering the variational integral 

i
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i i i i ij  i

i i i

i i i i i i 

i i 0

E = 〈ψ Ηψ 〉  
Unit -6 

E =   ∑i 
Ciφi  Η ∑ j 

C jφ j 
Quantum Mechanical 
Treatment 

 

E = C1φ1 + C2φ2 + C3φ3 + ...Η C1φ1 + C2φ2 + C3φ3 + ... NOTE 
 

E = ∑ C2 φ Ηφ + ∑ C φ Ηφ → (1) 
 

Moreover, φi Η φi = Ei → (a) 
 

φi Η φ j = Ej φi φ j = 0 → (b) 
 

Then (1) becomes 
 

E = ∑ C2E + 0 [The second summation in (1) vanishes due to (b)] 
 

If E0 is the energy of the lowest state or lowest Eigen value of Hˆ then 
 

E-E0 = ∑ C2E − ∑ C2E [Q∑ C2 = 1] 
 

E-E0 = ∑ C2(E − E ) → (2) 
 

The quantity Ei − E0 must be positive or zero for all values of i and Ci
2 is 

always positive, the R.H.S of the above equation (2) must always be 
positive or zero. 

 

Hence E-E0 ≥ 0 

E ≥ E0 

〈ψ Ηψ 〉 ≥ E0 

 
This is variation theorem. 

 

 
6.8 Time Independent Perturbation 

Perturbation method is an approximation 
method used to solve the wave equations representing the 
systems having more than one electron. This method is 
suitable for a system, which are subjected to very weak 

i ≠ j j

i 0

i
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NOTE 

electric or magnetic field and also for the system whose zero 
order states are non-degenerate. 

Conditions under which perturbation theory is based: 

1. The total Hamiltonian of the 
perturbed system is the sum of the parts (i)unperturbed 
Hamiltonian Ĥ (0) and (ii)  perturbation 

 

Ĥ  = Ĥ (0)  + λV̂ 

where λVˆ is the perturbation and λ is the expansion 
parameter. 

2. The system is only very slightly disturbed and different from 
the system for which the exact solution is known i.e. λV̂ is 
very small compared to Ĥ (0) . 

Ĥ (0) 〉〉λV̂ 
 

3. The eigen values E(0) and eigen functions ψ (0) of the 
unperturbed Hamiltonian H (0) are known. 

H (0) ψ (0) =  E(0) ψ (0) 

 

4. If ψ is the wave function of the Hamiltonian of the perturbed 

system Ĥ            with eigen value E then the eigen value equation is 
Ĥψ  = Eψ 
(H (0) + λVˆ)ψ = Eψ 

The wave function ψ and energy E are functions of λ and 
hence it is possible to expand them in terms of λ in the form 
of power series as 

 

ψ =ψ (0) + λψ (1) + λ2ψ (2) + λ3ψ (3) + ......................(1) 

And 
E = E(0) + λE(1) + λ2E(2) + λ3E(3) + (2) 

 

Where ψ (1),ψ (2)...... and E(1), E(2) …. Etc are independent of λ . 

ψ (1)andψ (2) are chosen such that they are orthogonal toψ (0) , 

which is normalized. 

5. The equation of the perturbed system is 
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(H 0 + λV̂ )(ψ (0) + λψ (1) + λ2ψ (2) + ...) = (E0 + λE(1) + λ2 E(2) + ....)(ψ (0) + λψ (1) + λ2ψ (2) + ...) 

The order of accuracy depends on the number of terms chosen in the 
above equation. Since the perturbed system is only slightly different from 

Unit -6 
Quantum Mechanical 
Treatment 

the unperturbed one. ψ (0) and E(0) may be chosen as approximate solutions NOTE 

of the perturbed system. This is called zeroth order approximation to the 
true solution of the perturbed system. 

If the second term in the series that is ψ =ψ (0) + λψ (1) and 

E = E (0) + λE (1) are chosen and the schrodinger wave equation is solved it 
will give rise to first order approximation to the true solution of the 
perturbed system. 

 

 

Ĥ (0)ψ (0)  = E(0)ψ (0) →Zeroth order perturbation equation. 

(Ĥ (0) − E(0) )ψ (1)  = −V̂ψ (0) + E(1)ψ (0) → 
 
First order perturbation equation. 

 
 

First order perturbation theory: 

First order perturbation equation is 

(Ĥ (0) − E(0) )ψ (1)  = −V̂ψ (0) + E(1)ψ (0) 

By solving this equation first order correction to the eigen function ψ (1) 
and the first order correction to the eigen value 

and E are calculated. 

E (1) are obtained then ψ 

ψ =ψ (0)  + λψ (1) 

E = E (0) + λE (1) 

 

 

ψ (0) and E(0) are known for the given system under consideration. 
 
 

First order correction to the energy and approximate energy of the 
perturbed system: 
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j

i i i i i(Ĥ (0) − E (0) )ψ (1) = −V̂ψ (0) + E (1)ψ (0)  is the first order 

Unit -6 perturbation equation for the ith state . ψ (1) is expanded in 
Quantum 
Mechanical 
Treatment 

NOTE 

terms of the complete set of eigen functions of the 
unperturbed Hamiltonian H (0) . The unperturbed equation is 

Ĥ (0)ψ (0)  = E (0)ψ (0) 

 
where i = 0,1,2,3 etc. 

i i i  

ψ (0)ψ (0)ψ (0).......ψ (0)ψ (0) etc belong to orthonormal set of 
0 1 2 i j  

functions and E (0) is non-degenerate. 

ψ (1)  = ∑C ψ (0) → (a) 
i ij j  

j ≠i 
 
 

Multiply by ψ (0) and integrate over all space 
 
 
 
 
 

ψ (0)ψ (1) = ∑C ψ (0)ψ (0) = 0 
i i ij i j 

j ≠i 

Since the wave function ψ (0 ) is orthogonal to ψ (0) . Hence 
i j 

ψ (0 ) is orthogonal to ψ (1) . 
i j 

Substituting the value of ψ (1) in the first order perturbation 

equation we get 

(Ĥ 0  − E(0) )∑C ψ (0)  = −V̂ψ (0) + E(1)ψ (0) 
i 

j≠i  
ij j i i i  

∑C [Ĥ 0  − E(0)ψ (0)] = −V̂ψ (0) + E(1)ψ (0) 
ij i j 

j ≠i  
i i i  

 

 

H (0)ψ (0) = E(0)ψ (0) 
j j j  
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i

i

∑C (E(0) − E(0) )ψ (0) = −Vˆψ (0) + E(1)ψ (0) 
ij j i j 

j≠i  
i i i 

Unit -6 

Multiply by ψ (0 ) and integrate over all space 
Quantum Mechanical 
Treatment 

 

∑C ψ (0) E(0) − E(0)ψ (0) = − ψ (0) Vˆψ (0) + E(1) ψ (0)ψ (0) NOTE 
ij i j i j  

j≠i 
i i i i i  

 

 

∑C  (E(0) − E(0) ) ψ (0)ψ (0) = − ψ (0) V̂ψ (0) + E(1) ψ (0)ψ (0) 
ij j 

j≠i 
i i j i i i i i  

ψ (0 ) and ψ (0) etc belong to orthonormal set. Hence 
i j 

 
 

ψ (0)ψ (0) 
 

= 0 and ψ (0)ψ (0) = 1 
i j i i 

 

0 = − ψ (0) Vˆψ (0) + E(1) 
i i i  

 

E(1) = ψ (0) Vˆψ (0) 
i i i  

 

Hence first order correction to the energy of the ith state is 
 
 

E(1) = ψ (0) Vˆψ (0) 
i i i  

 

E (1) is the first order correction to the true energy. The approximate energy 

of the perturbed system according to the non-degenerate time independent 
first order perturbation theory is 

 
 

E  = E(0) + λE(1) 
i i i  

 

E = E(0) + λ ψ (0) Vˆψ (0) 
i i i i  

 

First order correction to the wave function: 
 
 

First order perturbed equation for the ith state is 
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i

i j

i i i j i 

 

 
Unit -6 
Quantum 
Mechanical 
Treatment 

NOTE 

(Ĥ 0  − E(0) )ψ (1) = −Vψ 0 + E(1)ψ 0 

 
ψ (1) is expanded in terms of a complete set of eigen 

functions of the unperturbed Hamiltonian 
 
 

ψ (1) = ∑C ψ 
i ij     j 

j ≠i 

ψ (0 ) and ψ (0) belong to orthonormal set. Substituting this in 

perturbation equation 
 

(Ĥ 0  − E(0) )∑C ψ (0)  = −V̂ψ (0) + E(1)ψ (0) 
i 

j ≠i 
ij j  i i i  

 

 

H (0)ψ (0) = E(0)ψ (0) 
j j j  

 
 
 
 

∑C (E(0) − E(0))ψ (0) = −Vˆψ (0) + E(1)ψ (0) 
ij j i j 

j ≠i  
i i i  

 

upon expanding the summation we get, 

put   j = 1, 2, 3, 4 ................ for the ith state. 

 

C (E(0) − E(0) )ψ (0) + C (E(0) − E(0) )ψ (0) + C (E(0) − E(0) )ψ (0) + C (E(0) − E(0) )ψ (0) + ....... 
i1 1 i 1 i 2 2 i 2 i3 3 i 3 i 4 4 i 4 

= −Vˆψ (0) + E(1)ψ (0) 
i i i 

In order to obtain C multiply both sides by ψ (0) and 
i1 1 

integrated over all space 

(E(0) − E(0))C ψ (0)ψ (0) = − ψ (0) Vˆψ (0) + E(1) ψ (0)ψ (0) 
1 i i1 1 1 1 i i 1 i 
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− ψ V ψ (0) (0) 
1 

ˆ 
i 

− ψ V ψ (0) (0) 
2 

ˆ 
i 

− ψ V ψ (0) (0) 
j 

ˆ 
i 

+ ψ V ψ (0) (0) 
j 

ˆ 
i 

i

1 1 1 i 

Since the zero order wave functions are orthogonal and individually 
normalized 

 

Unit -6 
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ψ (0) ψ (0)  =1 ψ (0)ψ (0) = 0 1 ≠ i Treatment 

NOTE 
 

Ci1 = 
(E(0) − E(0) ) 

1 i 

 
 
 

Ci 2 = 
(E(0) − E(0) ) 

2 i 

 
 
 

Cij = 
(E(0) − E(0) ) j i 

 
 
 

Cij = 
(E(0) − E(0) ) j i 

 
 

Substituting the value of C in ψ (1) 
ij i  

 
 
 

ψ (0) Vˆψ (0) 

ψ (1) = ∑
  j i 

.ψ (0) 
i (E (0) − E (0) ) j 

i≠ j j i  
 

ψ (1) is the first order correction to the true value function. 
 
 

E(0) ≠ E(0) 
j i  

 

Thus according to the non-degenerate time independent first order 
perturbation theory. 

Approximate solution of the first order perturbation equation. 
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(E − E ) 

ψ (0) Vˆψ (0) 
ψ   =ψ (0) + λ∑

  j i 

.ψ (0) 
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i i  (0) (0) j 
i ≠ j j i 

 
 

 

This relationship is not valid if there is degeneracy in the 
eigen spectrum of H (o) that is E − E for i ≠ j . For it to be 

j i  

valid ground state should be non-degenerate. 
 
 
 

6.9 SCE Methods 
 

According to Hartree each electron is assumed to move in 
a spherically symmetrical field due to the nucleus and the 
average potential field is due to all the electrons except the 
one under consideration. This field in which electron move is 
called self consistent field. 

The wave function of an atom containing ‘n’ electrons is 
written as product of ‘n’ number of one electron functions that 
is 

ψ = φ1(1)φ2(2)φ3(3) φn(n) 
 

 
where φ1,φ2 ,φ3 .......... φn are the normalized and mutually 

orthogonal one electron wave functions. 

φ1(1) means the electron (1) is put in the orbital φ1................. 

etc. 

The antisymmetric wave function of the atom is expressed 
as a determinant. 

φ1(1) 

  1  φ1(2) 
= 

φ1(1) 

φ1(2
) 

φ2 (1) 

φ2 (2) 

φ2 (1) 

φ2 (2) 

 
.......... 

 
.......... 

φn (1) 

φn (2) 
2 

n! M       ..........    

φ1(n) φ1(n) φ2 (n) φ2 (n) ........... φn (n) 
2 

ψ
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1 

n! 

For an n-electron atom with closed shell configuration, that 
is in which all atomic orbitals are doubly occupied with paired 
spins. 
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NOTE 

ψ = φ1(1) φ1(2
) 

φ2(3
) 

φ2(4
) 

 
........ φn (n) 

2 

 

where the determinant has been represented through diagonal 
elements. φ1(1) is the spin orbital with electron 1, φ2 (2) with electron 2, in 
the same orbital φ , and so on. 

Fock introduced a new operator Fˆ known as Fock operator. It is an 
operator for kinetic energy of electron, potential energy of inter electron 
repulsion and potential energy of electron spin exchange between pair of 
electrons. 

The Fock operator for electron is defined as 
 

n 
 

F̂ = − 
1 ∇2 − 

 z + ∑
2

 
 

 

(2J − K ) 
(1) 2 r1 

j j 
j =1 

 
 

− 
1 

∇2 represents kinetic energy operator for electron 
 

2 1 

 

− 
z 

represents operator for potential energy of attraction between electron 
r1 

1 and nucleus. 

J j represents operator for potential energy of repulsion between electron 

1 and jth 

electron. 

K j represents operator for potential energy of change of spin between 

electron 1 and jth 

electron. 

The potential energy of repulsion experienced by electron 1 in the field 
of electron j is given by the following operator Jj 

1 
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n n

r

2

2

r 

J  =  φ 
1 φ dτ 

 

Unit -6 
Quantum 
Mechanical 
Treatment 

NOTE 

j ∫ j j j  
i, j  

 

The sum of the operator for the potential energy of 
repulsion experienced by electron 1 in a field of every other 
electron of the atom is expressed as follows 

 
 

∑ J  = ∑ φ 
1 φ dτ 

 
j 

j =1 
∫ 

j =1 
j j j 

i, j 

 
 
 

The potential energy of exchange of spin between 
electron 1 and electron j is given by the following operator 
K1 

K1 = ∫φ j 
1 φ 
r1, j 

jdτ j 

 

There will be exchange of spin between electron 1 and n/2 
number of electron with opposite sign. Therefore there will 
be n/2 number of such operators. The sum of these operator 

n 
 

is ∑ K j 
j =1 

 

n n 
  ∑ K = ∑ φ 

1 φ dτ 
 

j 
j =1 

∫ 
j =1 

j j j 
1,2 

 
 
 

Thus the Fock operator for electron 1 F̂(1) 

 
is described. 

Similarly the Fock operator for other electrons can also be 
formed. 

A set of orbitals without spin, φ1,φ2,φ3 ......... φn 
2 

with 

variable parameter in each is chosen. Using these functions, a 

set of Fock operators F̂(1) , F̂(2) , F̂(3) , F̂(4)  ..................... F̂ 
2 

were 

formed. Substituting the above wave function with respective 

2

n
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1 2 3 

Fock operators and so having the following “Pseudo- 
Schrodinger wave equation”. A set of wave functions 

 

Unit -6 

φ ' ,φ ' ,φ '.............φ ' were obtained 
2 
 

F̂φ  = E φ 

Quantum Mechanical 
Treatment 

NOTE 
i i   i  

 
 

Using the new set of wave functions, a new set of Fock operators 
F̂( 

' , F̂ ' , F̂ ' , F̂ ' ……….. F̂ ' 
 

 

are formed and usingφ ' ,φ ' ,φ '.............φ ' , 
 

1) (2) (3) (4) n 
2 

1 2 3 n 
2 

the pseudo schrodinger equation is solved to get a set of functions 
φ ",φ ",φ ".............φ " . This process is repeated till we get a set of orbitals 

1 2 3 n 
 

2 

which are not very different from the previous set. This set of orbital is 
called self consistent field (SCF) orbitalsφ s,φ s,φ s,φ s ….. 

1 1 2 2 

 
 
 

6.10 Check Your Progress 
 

1. State Pauli’s exclusion principle 
2. What is meant by Slater determinant? 
3. Write notes on self consistent field method . 

 
 

6.11 Answers to check your progress questions 

1. Pauli’s exclusion principle states that “The total wave function of electron 
must be antisymmetric under the interchange of any two electrons or no two 
electrons in one and the same orbitals can have all the fact quantum numbers 
same”. 

 
2. In order to construct antisymmetric wave function for a multi-electron 
atom, the increase in the number of electrons increases the number of terms in 
such large proportions [for ex: 5! i.e 120 terms for an atom with 5 electrons 
only]. We must find an abbreviated form to represent a wave function. This can 
be done by writing it in the form a determinant in which the spin-orbitals are the 
elements, each row in the determinant is labeled with an electron and each 
column with a spin orbital. 

n
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3. According to Hartree each electron is assumed to move in a 
spherically symmetrical field due to the nucleus and the average 
potential field is due to all the electrons except the one under 
consideration. This field in which electron move is called 
self consistent field. 

 
 

6.12 Summary 
 

• Pauli’s exclusion principle states that “The total wave function of 
electron must be antisymmetric under the interchange of any two 
electrons or no two electrons in one and the same orbitals can 
have all the fact quantum numbers same”. 

• For many problems, it is not practical to obtain a wave function by 
the exactsolution of a wave equation that describes the system. It 
is still possible toperform many types of calculations, and one of 
the most useful techniques is that known as the variation method. 

• The exact solution of the Schrödinger wave equation for complex 
atomsis not possible. However, examination of the form of the 
wave functions obtained for the hydrogen atom suggests that 
approximate wave functionsmight be obtained if we were to take 
into account the mutual electronrepulsion. Such a procedure has 
been devised by J. C. Slater, and theapproximate wave functions 
that result are known as Slater wave functions [or Slater-type 
orbitals (STO)]. 

•  Perturbation method is an approximation method used to solve 
the wave equations representing the systems having more than one 
electron. This method is suitable for a system, which are subjected 
to very weak electric or magnetic field and also for the system 
which zero order states are non-degenerate. 

• According to Hartree each electron is assumed to move in a 
spherically symmetrical field due to the nucleus and the average 
potential field is due to all the electrons except the one under 
consideration. This field in which electron move is called self 
consistent field. 

 

6.13 Keywords 
 

 

• Radial wave function: An orbital in a mathematical function 
called a wave function that describes an electron in an 
atom.Radial wave function for a given atom depend only upon the 
distance, r from the nucleus. 

• Angular wave function: Angular wave functions depend only 
upon direction and in effect, describes the shape of an orbital. 
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• Petrubation: The act of disturbance, in physics a secondary 
influence on a system that modifies simple behaviour, such as the 
effect of the other electrons on one electron in an atom. 

 
 
 
 

6.14 Self-assessment questions and exercises 
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NOTE 

 

1. Discuss the principle of variation method. 
2. What is meant by Slater determinant? Obtain its value for helium atom. 
3. “For many electron systems only approximation methods are needed”- 
Explain. 

 
 

6.15 Further readings 
 

1. Quantum  Chemistry, I.N. Levine, Allyn and Bacon, Boston, 
1983. 

2. Quantum Chemistry, R.K.Prasad, Wiley Eastern, New 
Delhi,1992. 
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Structure 
7.0 Introduction 
7.1 Objectives 
7.2 Application of variations methods to hydrogen atom 
7.3 Application of perturbation methods to helium 
7.4 HMO method 
7.5 Application to butadiene 
7.6 Check Your Progress 
7.7 Answers to check your progress questions 
7.8 Summary 
7.9 Keywords 
7.10 Self-assessment questions and exercises 
7.11 Further reading 

 

7.0 Introduction 
 

 

when the phrase “molecular orbital calculations” is first 
encountered, 

the mental image may well be one of hopelessly complicated 
mathematics and piles upon piles of computer output. It is 
interesting to note, however, that sometimes a relatively simple 
calculation may provide useful information that correlates well 
with experimental observations. Such is the case with the method 
known as the Hückel molecular orbital (HMO theory) calculation. 
This method was developed in 1931 by Erich Hückel, a physicist 
in Marburg, Germany, who was trying to understand the concept of 
aromaticity in benzene. The calculational procedures are relatively 
simple and have become known as the “back of an envelope” 
calculations. 

 

7.1 Objectives 
 

 

After going through this unit, you will be able to: 
• Explain about the application of variation methods to 
hyderogen atom. 

• Understand the concept of HMO method and application to 
butadiene. 



 

 

7.2 Application of Perturbation method to hydrogenatom  
Unit 7 
HMO Method 

 
 
 
 
 
 
 
 
 

 
Hamiltonian operator of Hydrogen atom in atomic units 

 
 

H = − 
1 ∇2 − 

1
 

 
∇2 = 

1
 

2 r 

 
∂  

r 2 ∂ + 
1 

 
∂  

sin θ 
∂  + 

1 ∂ 
r2 ∂r ∂r r 2 sin θ ∂θ ∂θ r2 sin 2 θ ∂φ 2 

 
 

Hydrogen atom is spherically symmetrical and hence the wave function 

has no nodes and ψ is independent of θ and Ф. 

Hence ∇2 = 
1
 ∂ 

r 2 ∂ 

 
 And Hamiltonian 

r 2 ∂r 

 H = − 

∂r 

1 ∂ 
r 2 

 
∂  − 

1  
  
 2  r 2 ∂r ∂r 

 
r 


 

The wave function for hydrogen atom is chosen by infinitive means. Let 

ψ = e− ar 

 

where ‘a’ is the variable parameter. 

The energy of the system is obtained from the variational integral. 

ψ H ψ 
E = 

ψ ψ
 

 
 
 
 
 
 

Self-Instructional Material 

1  

2



 

−  

∂
2

ar 

e− ar − 
1  1  ∂ 

r 2   ∂  − 
1 

e− ar 
   2  
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E =
  2  r  ∂r ∂r  r  

e− ar e− ar 

 
 

∞ π 2π − 
 ∫ ∫ ∫e ar − 

r 2  e− ar − e−ar r 2 sin θdrdθdφ 
E = 0 0 0  2r  ∂r ∂r r  

 

∞ π 2π 

∫ ∫ ∫e−ar.e−ar.r 2 sin θdrdθdφ 
0 0 0 

 
 

∞ 
 1   ∂ ( ) 2 − ar 

e−ar  2
 

 ∫e − 
2r 2  ∂r 

r e . − a  − r dr ∫sin θdθ ∫ dφ r 

E = 0   
  0 0 

π 2π 

∫e−2ar.r 2dr ∫sin θdθ ∫ dφ 
0 0 0 

 ∞    
−      a  ( ( ) 

) 
−ar  

∫e ar 

 r2e−ar. − a 

 
+ e−ar.2r − e r r 

2dr 

E = 0 
 
 

∞ − 

 2r 

 
 

 

 
∞ 

∫e−2ar .r 2dr 
0 

 

a2 e−ar  

 
 
 

e−ar  

∫e 
E = 0 

ar 
− 
 

e−ar + a.  − 
2 r  

∞ 

r
2dr 

r  

 
 

∞ a2 
−

 
 

 

∫e−2ar .r 2dr 
0 

 
∞ ∞ 

∫− 
E = 0 

e 2arr 2dr + ∫ a.e−2ar.rdr − ∫e−2ar.rdr 
0 0 

∞ 

∫e− 2ar .r 2dr 
0 

 

a2 ∞    
− 

∞ ∞ 
 − 

E = 
2
 ∫e 2arr 2dr + a∫e−2ar.rdr − ∫e−2ar.rdr 

0 0 0 
∞ 

∫e−2ar .r 2dr 
0 
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 1 ∂ 1  

π 2π 

∞

2



 



− 
a2 2! 

 
 

1! 1! 
 

2 
. (2a)2+1  

+ a. (2a)1+1  
− (2a)1+1

 

E = 
2!

 

(2a)2+1
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− 1 + 1 − 
1 (− + −  ) 3

 
 

 

NOTE 

E =    8a 4a 4a = 
2 

 

8a3 

a2 − 2a 

a 2a 
8a2.
2 

2 8a 

E = 
2 

Energy is minimized with respect to a 

∂E = 0
 

∂a 
 

∂  a2 − 2a  1 

∂a 

 

 =  (2a − 2) = 0 
2  2 

 
 

a = 1 

Hence the wave function is 
 
 

Energy 

ψ = e−r 

 
 

a2 − 2a 
E = 

2 

E = 
1 − 2 

= − 
1 

au 
2 2 

 

This represents the exact value of energy and exact eigen function for 
hydrogen atom in its ground state. Any other wave function chosen will 
always lead to an energy greater than the lowest exact energy of the 
system. 

 
 
 

7.3 Application of Perturbation Method to Helium 
 

The coordinates of electrons of Helium atom can be represented as 
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Hamiltonian operator of Helium atom is 

H = − 
1 

∇2 − 
1 

∇2 − 
2 

− 
2 

+ 
1
 

    

 
 
in au 

2 1 2 2 r r 
 

r12 
 

H = H( + H + 1  
1) (2) r12 

 

where H(1) and H(2) are the one electron hydrogen like 
Hamiltonians of the system. 

 
 

For the ground state of Helium atom the electronic 
configuration is 1s2. 

Slater determinantal form of overall wave function of 
Helium atom is 

 
 

ψ o =ψ1s (1,2) =ψ1s (He) = 
 

1S(1)1S 

 

(2) 
 
 
 

= 
  1   (1S(  1S )(α   β − β  α ) 

1) (2) (1)   (2) (1)   (2) 
 

This is the trial approximate wave function. According to 
variation method the energy based on the approximate wave 
function is always higher than the true energy Eo of the 
ground state. 

E = 

116 

ψ o H ψ o 

1 

2 

2 

2



 

E = 
1
 (1S 1S )(α   β − β  α )H (1S 1S )(α   β − β  α ) 

1S 2 (1) (2) (1)   (2) (1) (2) (1) (2) (1)   (2) (1) (2) 
1 ( ) 

 

 

( )( ) 
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E1S = 
2
 1S(1)1S(2) H 1S(1)1S(2) α(1)β(2) − β(1)α(2) HMO Method 

= 
1 (1S( 1S )H (1S 1S ).2 NOTE 
2 1) (2) (1) (2) 

=   (1S(1)1S(2) )H (1S(1)1S(2) ) 
 
 

Hamiltonian for Helium atom is 
 
 

 
H = H 

 
 
 
(1) 

 
+ H(2) + 

1 
 

 

r12 

 

E1S = (1S (1)1S(2) 

 
 

(1) + H(2) + (1S (1)1S(2) ) 
 
 
 

E1S = (1S (1)1S(2) 

 
 

(1) (1S (1)1S(2) )+ (1S (1)1S(2) 

 
 

(2) (1S (1)1S(2) )(1S (1)1S(2) ) (1S (1)1S(2) ) 
 
 

E1S = (1S(1) H(1) 1S1 ) (1S(2)1S(2) ) + (1S(21) H(2) 1S(2) )(1S(1)1S(1) )+ J 
 

E1S = E1S (1) + E1S (2) + J 
 
 

E1S (i ) is the energy of ith electron in the 1S orbital of Helium and J is 
 

called Coulomb integral. It is defined as J = (1S(1)1S(2) ) 1 (1S 
r12 

(1)1S(2) ) and it 

measures the Coulombic repulsion between electrons. 
 
 

Calculation of E1S (i ) : 

In a two electron atom, the average potential experienced by an electron 
varies between 
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1 
and −

 2
 

ri ri 

that is it depends on the effective nuclear 

 
NOTE 

charge experienced by the ith electron in Helium atom. The 
best value of Z′ , the effective nuclear charge will be 
determined by the variation principle. 

 
 

The wave function of 1S – orbital appropriate to this 
effective nuclear charge Z′ is 

 
1S = (z' )2 e− z 'r 

 

This orbital wave function is an eigen function of the 
 

 1 2 z'  
Hamiltonian operator− ∇ 

 2 
−  . 

r  
 

 z'2  
with eigen value −  

 2  
 

 
i.e. 


− ∇2 − 

3 
 

 

'  ' − z 'r 
 

 
= − 

3 
 

 

'2  ' − z 'r 
 

 2 r   2  
 

E1S(i), energy of the ith electron in the 1S orbital of helium 
atom. 

 

i.e. E1S(i) = 
 

= 

1S(i) H (i) 1S(i) 
 
1S (i) − 

1 
∇2 − 1S (i) 

 

2 i 

1 2 z' 2 
= 1S(i) − 

2 
∇i − 

r 
− 

r 
+ 1S(i) 

=  1S (i) − 
1 

∇2 - 
 

 

1S(i) 
 
− 1S(i) 

2 i 

 
1S(i) 
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i i ∫ ∫ 

=  1S (i) − 
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∇2 - 
 

 

1S (i) 
 
− (2 − z') 1S (i) 

2 i 

 
1S (i) 
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− z' 
2
 

= 
2 

 
− (2 − z') 

 
1S (i) 

 
1S(i) 

NOTE 

 

 
E1S(i) = 

3 

− z' 
2
 

 
 

2 

 
− (2 − z') 

∞ π 2π 3 ∫ ∫ ∫ − ' 1 z' 2 ' 2 

i 

z' 2 

0 0 0 

e z ri 

 
e− z ri r 

 

drSinθdθdφ 

 

= − z' 
 
− (2 − z') 

z'3 ∞ 
 

 

π 

e−2 z 'r r dr 
2π 

Sinθdθ dφ 
 
 

E1S(i) = 

 
− z' 

2
 

 
 

2 
 
− z' 

2
 

 
 
− (2 − z') 

 
z'3 

π 

0 0 0 
 
 

. 4π .  
L1 

(2z')2 

E1S(i) = 
2 

− (2 − z') z ' 

E1S(1) = E1S(2). 

Since electron (1) and (2) are equivalent. 
 

 z'2 , ,  

E1s 
(1,2) = 2− 

 
− (2 − z )z  

2  
 

= −z'2 − 4z' + 2z'2 

= z'2 − 4z' 
 

E = E1s (1)+ E1s (1)+ J J = 
5 

z' 
8 

 

E = z'2 − 4z' + 
5 

z' 
8 

 

E = z'2 − 
27 

z' 
8 

 
Minimizing the energy with respect to variable parameter 

 

z ' = 
∂E 

= 0 
∂z' 
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z' 
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r i 
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r i 
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1

2



 

 

∂  
z'2 − 

27 
z' 

 = 0 
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 
8 


 

 

NOTE 2z' − 
27 

= 0 
8 

z' = 
27 

= 1.69 
16 

Substitution of this optimum value of 
expression we get, 

 
 
 
 

 
z ' in energy 

E = (1.69)2  − 
27 

×1.69 
8 

 
1au = 27.2eV 

= −2.8476au 

 
E= -77.48eV 

This is the approximate ground state energy of Helium 
atom. Experimental value is -2.904au (-79 eV). Thus 
variation principle accounts for 98% of the observed 
energy. 

The effective nuclear charge experienced by an 
electron in Helium atom is 1.69 instead of the true charge 
2. The difference in these two values 0.31 represents the 
screening of the nucleus by other electron and 0.31 is called 
the screening constant or shielding constant. 

 
 
 
 

7.4 HMO Method 
 

Huckel adopted an approximation method to estimate 
energy and wave function of the molecular orbital formed 
by the combination of π molecular orbital. The theory 
proposes the following approximation. 

1.  In  a  conjugated  molecule  the  π electron does not 
interact with σ electron. The complete wave function  ψ  

for the molecule is expressed as 
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a 
n

ψ = ψ σ ,ψ π 

Where ψ σ = complete wave function for σ electrons 

ψ π = complete wave function for π electrons. 

The energy E of the molecule is expressed as, 

E = E σ + E π 

2. Each HMO is considered as linear combination of 2P z atomic orbital 

ψ i = a1p1+ a 2p2+……an pn 

 

 
Unit 7 
HMO Method 

 

NOTE 

 

ψ i = 
r =1 r 

p
r 

Where ψ i = i th HMO of the π electron system 

pr =2Pz atomic orbital of the rth carbon 

n = Total number of carbon atoms in the molecule 

ar = Coefficient of 2Pz orbital of rth carbon atom in the ith HMO 
 
 

3. The energy of the ith HMO i.e. Ei is calculated by the formula, 

E = ∫
ψ i

 Ĥ  ψ idτ 
 

 

i ψ 2 dτ 
∫  i 

Application of variation principle with ‘n’ number of carbon 
atoms gives ‘n’ number of secular equation of the following types. 

a1(H11-ES11) + a2 (H12-ES12) +…… an(H1n-ES1n) = 0 

a1(H21-ES21) + a2  (H22-ES22) +…… an(H2n-ES2n) = 0 

. 

. 

a1(Hn1-ESn1) + a2  (Hn2-ESn2) +…… an(Hnn-ESnn) = 0 
 
 

The corresponding nth order secular determinant is 
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H11  - ES11 

H 21  - ES 21 

- 

− 
Hn1  - ES n1 

H12   - ES12 

H 22  - ES 22 

- 

− 
Hn2  - ES n2 

− − − 
− − − 
− − − 
− − − 
− − − 

H1n   - ES1n 

H 2n  - ES 2n 

− = 0 

− 
Hnn - ES nn 

 
 

4. The columbic integrals Hpi represents the energy of the 
electron in 2Pz orbital of ith carbon atom 

i.e. Hii = ∫ pi Η pi dτ 

where  pi  is  a  wave  function of 2Pz orbital of ith carbon 
atom 

All such integrals are equal and denoted by symbol α 

H11 =  H22……. Hii 

Hnn = α (say) 

5. The resonance integrals Hrs represent the energy of 
interaction between rth carbon atom and sth carbon atom. 

 

i.e. Hrs  = ∫ pr  Η̂ ps dτ 

where pr  is a  wave  function  of 2Pz orbital of rth carbon 
atom 

ps is a wave function of 2Pz orbital of sth carbon atom 

For non-bonded carbon atom Hrs = 0 

For bonded carbon atom all such integrals are equal and 
denoted by symbol β 

H12 = H23……. H34 =….= β 
(say) 

6. Integral of type Srr is equal to one. 

i.e. Srr = ∫ pr 

 
 

2 dτ =1 
 

S11 =  S22……. S33 =. ..... =Snn =1 
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7. The overlap integrals Srs are assumed to be zero though it 
is not actually zero. This assumption simplifies the 
calculation. 

Srs = ∫ pr p s dτ 

S12 = S23 =………= 0 

Hence the secular determinant for a linear conjugated polyene is of the 
following form. 
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α - E β 0 0 0 

β α - E β 0 0 

0 β α - E β 0 

...... ..... ....... ...... .......

0 0 0 0 0 
 

Dividing each element by β and putting α -E/ β = x 

Then 

x 1 0 0 − − 0 

1 x 1 0 − − 0 

0 1 x 1 − − 0 

− − − − − − − 
0 0 0 1 − − x 

The solution of the secular determinant is written as follows 

X = - 2cos (n π /N+1) 

α -E/ β = - 2cos (n π /N+1) 

α -E = - 2 β cos (n π /N+1) 

Energy En  =  α  + 2 β cos (n π  /N+1) n =1,2,3,……N 

n = order of energy level (or) order of molecular orbital. 

N = Total number of carbon atoms in the molecule. 
 
 

Thus, energy can be written as 
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/N+1) 

En = α + 2 β cos (nπ 

 
 

 

NOTE 7.5 Application to Butadiene  
There are four 2pz atomic orbital to be combined and 

four π electrons in the molecule. The HMO’s are of the 
form, ψ = a1p1 + a2p2 + a3p3 + a4p4. Where a1, a2, a3, a4 are 
coefficients. There are four coefficients, so 4x4 
determinants. 

The secular determinant of the system is 
 

x 1 0 

1 x 1 

0 1 x 

0 0 1 

0 
0 

= 0 
1 

x 
 
 
 

x 1 

x 1 x 

0 1 

0 1 1 

1 -1 0 x 

x 0 1 

0 

1 =0 

x 
 
 
 

x {[x(x 2-1)-1(x)} -1{[1(x2-1)-1(0)} = 0 

x (x3-x-x)-1(x2-1) = 0 

x4- x2 - x2-x2+1 = 0 

x4-3 x2+1 = 0 

Put  y = x2 y2-3y+1 = 0 

y = -(-3)± 

 

− 4(1)(1) 

 
/ 2 [Qx =- 

b± − 4ac / 2a]  
 
= 3± / 2 

= 3± / 2 
 

= 3±2.236/ 2 
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x = ± x = ± NOTE 
 

x = +0.618 ; x = -0.618 x = +1.618 ; x = -1.61 
Since α -E/ β = x 

E =α - β x 

∴ E1 = α +1.618 β 

E2 = α +0.618 β 

E3 =α -0.618 β 

and      E4 =α -1.618 β 

Thus the total energy is, E π = 2( α +1.618 β ) +2(α +0.618 β ) -4α 

= 4α +4.48 β -4α 

∴ π Bond energy = 4.48 β 

Delocalization energy = (4α +4.48 β ) - 2x2(α + β ) 

= 4α +4.48 β -4α -4 β 

= 4.48 β -4 β 

= 0.48 β 
 

Wave functions: 

The wave functions corresponding to the energy levels E1,E2,E3 

and E4 may be determined as follows. 

The secular determinant for butadiene is 
 

x 1 0 0 

1 x 1 0 

0 1 x 1 

0 0 1 x 
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0.382 2.618 

∴ y = 0.382 (or) y = 2.618 

y = x2    

x = ± 
 

y x = ± 
 

y 



 

p 2dτ + (1.618a )2 p 2dτ +(1.618a )2 p 2dτ + a 2 p2dτ = 1
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The secular equations are obtained as follows 

a1x+a2 = 0 →(1) 

a1+a2x +a3 = 0 →(2) 

a2+a3x +a4 = 0  →(3) 

a3+a4x = 0 →(4) 

For the energy level E1 x = -1.618 

Putting x = -1.618 in equation (1) we get, 

a1(-1.618) + a2 = 0 

∴ a2 = 1.618 a1 

 
Substituting the value of a2 and x in equation 2 

a1+1.618 a1(-1.618) +a3 = 0 

a1-2.618a1+a3 = 0 

a3 = -1a1+2.618a1 

a3 =1.618a1 

Hence a2 = a3 

Substituting the value of a3 and x in equation 4, we get 

1.618 a1+a4(-1.618) = 0 

∴ a1 = a4 

From the condition of normalization, 

a1
2+a2

2 +a3
2+a4

2 = 1 

∴ ψ 1= a1p1+1.618 a 1p2+1.618a1 

p3+a4p4 

The wave function ψ 1 is normalized as follows 
 
 ∫ ∫ 1   1 1 2 

1   3 1 4 ψ 2dτ = 1 = (a p + 1.618a p + 1.618a p 
 
[a2 

+ a p )2 dτ 

∫ 1 1 ∫ 2 1 ∫ 3 1 ∫ 4 
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1

1

∴ a 2 [1+2.618+2.618+1] = 1 
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Thus, 

a1 =1/ 

∴a1 =0.372 

a2 =1.618a1 

=1.618(0.372) 

a2=0.602 

a3 = 1.618a1 =1.618(0.372) 

a3 =0.602 

 

ψ 1= 0.372p1+ 0.602p2+0.602 p3+0.372p4 

 

NOTE 

 
 

Similarly we can find for ψ 2, ψ 3 andψ 4 by using the values x =  -  
0.618, +0.618 and 1.618 respectively. The four HMO’s of butadiene are 
thus found to be as follows: 

ψ   1= 0.372p1+ 0.602p2+0.602 p3+0.372p4 

ψ  2= 0.602p1+ 0.372p2 -0.372 p3-0.602p4 

ψ   3= 0.602p1-0.372p2-0.372 p3+0.602p4 

ψ   4= 0.372p1- 0.602p2+0.602 p3-0.372p4 
 
 

7.6 Check Your Progress 
 

 

1. Explain the HMO method. 
2. Explain the HMO method and apply it to butadiene 

 

7.7 Answers to Check Your Progress Questions 
 

 

1. Huckel adopted an approximation method to estimate energy and 
wave function of the molecular orbital formed by the combination of π 
molecular orbital. 
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2. There are four 2pz atomic orbital to be combined and four π 
electrons in the molecule. The HMO’s are of the form, ψ = 
a1p1 + a2p2 + a3p3 + a4p4. Where a1, a2, a3, a4 are coefficients. 
There are four coefficients, so 4x4 determinants. Using the 

 
 
 
 
 
 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

HMO method, we derive, Bond energy = 4.48 β 

7.8 Summary 
The variation method to hydrogen atom gives, 

E = 
1 − 2 

= − 
1 

au 
2 2 

This represents the exact value of energy and exact eigen function for 
hydrogen atom in its ground state. Any other wave function chosen 
will always lead to an energy greater than the lowest exact energy of 
the system. 
7.9 Keywords 

• HMO : Huckel Molecular Orbital. 
• Variation method: For many problems, it is not practical to obtain a 
wave function by the exact solution of a wave equation that describes the system. 
It is still possible to perform many types of calculations, and one of the most 
useful techniques is that known as the variation method 

7.10 Self-Assessment Questions and Exercises 
 
1. Write down the steps involved in applying variation method. 
2. State and explain variation theorem with proof and apply it to 
hydrogen atom. 

7.11 Further readings 

Quantum  Chemistry,  I.N.  Levine, Allyn and Bacon, 
Boston, 1983. 

Quantum Chemistry, R.K.Prasad, Wiley Eastern, New 
Delhi,1992. 
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Unit-8: Assignment of point groups 

 

Structure 
8.0 Introduction 
8.1 Objectives 
8.2 Symmetry elements and symmetry operations 
8.3 Rules for forming a group 
8.4 Group multiplication table 
8.5 Group classification 
8.6 Point groups and systematic assignment of 

point groups for molecules 
8.7 Check your progress questions 
8.8 Answers to check your progress questions 
8.9 Summary 
8.10 Keywords 
8.11 Self-assessment questions and exercises 
8.12 Further readings 

 
 

8.0 Introduction 
 

Group Theory is the mathematical applications of symmetry to an 
object to obtain knowledge of its properties. A point group describes all the 
symmetry operations that can be performed on a molecule that results in a 
conformation indistinguishable from the original. Point groups are used in 
Group Theory,the mathematical analysis of groups, to determine properties 
such as a molecule’s molecular orbital. In this section we are going to focus on 
the Symmetry elements and symmetry operations, rules for forming a group, 
group multiplication table, group classification, Point groups and systematic 
assignment of point groups for molecules. 

 

8.1 Objectives 
 

After going through this unit, you will be able to: 
• Understand about the Symmetry elements and symmetry operations. 
• Understand the rules for forming a group, group multiplication table. 
• Explain the concept of point groups and systematic assignment of point 

groups for molecules. 
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8.2 Symmetry elements and symmetry 
operations     
. 
SYMMETRY ELEMENT 

 
A symmetry element is a geometrical entity such as a line or 

a plane or a point about which an operation of rotation or 
reflection or inversion is done. 

SYMMETRY OPERATION 

A symmetry operation is a movement of the molecule such that 
the resulting configuration of the molecule is indistinguishable 
from the original. The molecule is taken into an equivalent 
configuration or and identical configuration. 

The symmetry elements and the corresponding 
symmetry operations are listed below: 

 

Symmetry element Symmetry operation 
Proper axis of symmetry 
(Cn) 

Rotation once or several 
times by an angle θ= 
(2π/n) about the axis. 

Plane of symmetry (σ) One or more reflections  
in the plane. 

Improper axis of 
symmetry (Sn) 

Rotation about the axis 
followed by reflection in 
a plane perpendicular to 
the rotation axis. 

Centre of symmetry (i) Inversion of all atoms 
through the centre of 
symmetry. 

Identity element (E) This operation leaves the 
molecule unchanged. 

PROPER AXIS OF SYMMETRY (C n) 

This axis of symmetry can be explained by taking the example 
of triangular planar boron trichloride molecule. In boron 
trichloride molecule an axis of symmetry is located 
perpendicular to the plane containing all the atoms. This is 
known as the C3 axis of symmetry. In general the symbol for 
proper axis of symmetry is Cn, where n is known as the order of 
the axis. 

The order of the axis is given by the number of rotations by 
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θ, to get the identical configuration. n is alternative given by 
the formula. 

 
 

n = (2π/θ) 

where θ is the minimum angle of rotation to obtain the equivalent 
configuration. 

 
 
 
 
 

PLANE OF SYMMETRY ( σ) 

The plane containing all the atoms is called as molecular plane. 
[PtCl4]2- ion contains a molecular plane and four more reflection planes. 
Water has a reflection plane passing through the oxygen atom and another 
one containing all the atoms. 

 
 
 

 
 

The reflections plane in water molecule 

The reflection plane is of three types:- 

i) A plane is referred to as horizontal plane (σh) if it is 
perpendicular to the principal axis. 

ii)  A reflection plane which contains the principal axis is called as 
vertical plane (σv). 

iii)  A vertical plane which bisects two perpendicular C2 axes is  
called a dihedral plane (σd) e.g. allene. 
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IMPROPER AXIS OF SYMMETRY (Sn) 

It is the line about which a rotation by a specific angle 
followed by refletion in a plane perpendicular to the rotation axis 
is performed. E.g. S6 axis in staggered form of ethane. 

 

CENTRE OF SYMMETRY (i) 

This is the point such that any line drawn through it meets the 
same atom at equal distances in opposite directions. All 
homonuclear diatomic molecules posses the centre of symmetry. 

 
 
 
 

 
 
 

8.3 Rules for forming a group 
 

The symmetry elements of a molecule 
must satisfy certain rules in order that they form a group. The 
rules are 

1. The product of any two elements or square of each element 
must be an element of that group. 
2. In each group, there is one element which commutes with every 
other element and leaves it unchanged. In general the identity 
element does so. 
3. The associative law of multiplication hold good. 
4. Each element has an inverse or reciprocal which is also element 
of that group. 

If the element is A and its inverse is A-1 

Then, A A-1 ≡ E 

For e.g. consider the set of numbers 
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{1/4, 1/2, 1, 2, 4, 8, 16} 

By rule (1) 

2 x 4 = 8 

22 = 4 

42 = 16 

By rule (2) 

A^B^=B^A^ 

1x2 = 2x1 = 2 

1x4 = 4x1 = 4 

By rule (3) 

A (BC) = (AB) C 

2(4x8) = (2x4)8 

By rule (4) 

A A -1 

½ x 2 =1 

¼x4=1 

8.4 Group multiplication table 
It consists of rows and columns. Each is represented by a group element. For 
multiplication we can use the following method. i.e. Column element x Row 
element. 

For constructing a group, rearrangement theorem must be known. It 

 
 

Unit-8: 
Assignment of 
point groups 

 

 
 
 

NOTES 

states, 

“ In each column or a row a particular elements occur only one”. 

For example, 

Consider a group of order 2. This group consists of two elements only. 
Let the elements be E and A. The first step leads to the following table. 

 
 
 

 
G2 E A 
E E A 
A A X 

 
 

133  
Self-Instructional Material 



 

 

 
 

Unit-8: 
Assignment 

of point 
  groups  

According to rearrangement theorem ‘X’ should be ‘E’ only and 
cannot be ‘A’. ∴the group multiplication table of G2 is 

 

Example -2 
 

NOTE 
E C2 σv σv′ 
C2 E σv′ σv 

σv σv′ E C2 

σv′ σv C2 E 
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The following features of the multiplication table carry 
significance: 

1) E combining with any operation X gives X as the result 
since E does “nothing” i.e., EX=XE =X. 
2) C2 performed on any object, interchanges both left and 
right and front and back. 
3) σv interchanges only left and right while σv′, 
interchanges only front and back. 
Thus σv σv′ = σv′ σv is the same as front-back +left, -right 
interchange 

i.e. C2 C2 σv = σv′ σv  σv  = σv′E  = σv′ and  similarly C2  

σv′= σv 
 

8.5 Group classification 
 

FINITE GROUP 

A group that contains definite number of symmetry 
elements is called the finite group. For example, water molecule 
has 4 elements of symmetry and Ammonia molecule has 6 
elements of symmetry. Therefore they belong to the finite group. 

INFINITE GROUP 

A group that contains infinite number of symmetry 
elements these are called as infinite group. 

For example: linear molecules H2 (H-H), Br2 (Br-Br), HCl 
and CO2 can be rotated along the molecular axis to any degree. 
Therefore they have infinite axes of symmetry. Such molecules 
belongs to infinite group. 

ABELIAN GROUP 

Abelian group is a group in which each element commutes 
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with every other elements. 

For eg:- In water molecule, each element commutes with every other 
element and therefore water molecule belongs to abelian group. Such a 
situation dos not arise in NH3 molecule and hence it is non-abelian. 

CYCLIC GROUP 

A group in which one element generates all the other elements of the 
group is known as cyclic group. 

For e.g. the elements of symmetry that are present in H2O2 are E and C2. 
The element C2 generates the other element E since C2

2 ≡ E. 

SUB GROUP 

A sub group is the smaller group of a main group in which the 
elements of symmetry must satisfy the requirements for forming a group. 

The order of a subgroup is given by ‘g’. The order of a maingroup is 
the integral multiple of the order of the subgroup. 

h = g x n 
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NOTES 

Where ‘n’ is the integer. 

In water molecule, there are four subgroups. They are 

(E) (E, C2) (E, σv) and (E, σv’) 

In general, the identity element in any group will form one of the subgroup. 
 

8.6 Point groups and systematic assignment of point groups 
for molecules 

 

POINT GROUPS 

Depending upon the symmetry elements molecules are classified in to 
different groups. Molecular groups are called point groups. Because the 
symmetry elements intersect at a point and this point does not move during 
symmetry operations. Molecules are classified into different point groups 
based on certain combinations of symmetry operatins. The system of 
notation used for point group is known as schoenflies system. In this case 
symbols like Cnv , Dnh , Oh and Td are used. In order to identify the point 
group, the following flow chart will be helpful. 
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8.7 Check Your Progress 
 

1. Distinguish symmetry elements and symmetry operations? 
2. Explain Centre of symmetry? 
3. Define Cyclic group? 
4. Define Point group? 
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8.8 Answers To Check Your Progress Questions 
 

1. 
Symmetry element Symmetry operation 

Proper axis of symmetry (Cn) Rotation once or several times by an 
angle θ= (2π/n) about the axis. 

Plane of symmetry (σ) One or more reflections in the plane. 
Improper axis of symmetry (Sn) Rotation about the axis followed by 

reflection in a plane perpendicular to 
the rotation axis. 

Centre of symmetry (i) Inversion of all atoms through the 
centre of symmetry. 

Identity element (E) This operation leaves the molecule 
unchanged. 

2. This is the point such that any line drawn through it meets the same atom at 
equal distances in opposite directions. All homonuclear diatomic molecules 
posses the centre of symmetry. 

3. A group in which one element generates all the other elements of the group 
is known as cyclic group. e.g. the elements of symmetry that are present in 
H2O2 are E and C2. The element C2 generates the other element E since C2

2 ≡ 
E. 

4. Depending upon the symmetry elements molecules are classified in to 
different groups. Molecular groups are called point groups. 

 
 

8.9 Summary 
 

• A point group describes all the symmetry operations that can be 
performed on a molecule that results in a indistinguishable from the 
original. 

• The different types of groups and their definition are symmerized. 
• Symmety elements and their operation such as Proper axis of 

symmetry (Cn), Plane of symmetry (σ), Improper axis of symmetry 
(Sn) and Centre of symmetry (i) are clearly explained. 

 

8.10 Keywords 
 

Point group: point group describes all the symmetry operations that can be 
performed on a molecule that results in a conformation indistinguishable from 
the original. 
Group classification: A subset of a group that is closed under the group 
operation and in which every element has an inverse in the subset. 
Group multiplication table: Every row contains each element exactly 
once and every column contains each element exactly one. 
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8.11 Self-assessment questions and exercises 
1. Explain in detail about the rules for forming a group 
2. Discuss in detail about symmetry group and operations 
3. Dicuss the point group 
4. Explain Group classification 

8.12 Further readings  
3. Chemical Application of Group Theory, F.A. 

Cotton, John Wiley and Sons Inc. New York,1971. 

4. Group theory and its applications to Chemistry, 
K.V. Raman, Tata McGraw-Hill Publishing Company,1990. 
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9.0 Introduction 
The symmetry operations in a group may be represented by a set of 
transformation matrices, one for each symmetry element g. Each 
individual matrix is called a representative of the corresponding 
symmetry operation, and the complete set of matrices is called a matrix 
representation of the group. In this context, we discuss in detail about 
matrix representation theory,matrix multiplication, inverse of a matrix, 
matrixdiagonalization and matrix representation for symmetry operations 
. 

9.1 Objectives 
After going through this unit, you will be able to: 
• Understand the concept Matrix representation theory 
• Explain the Matrix multiplication and Inverse of matrix. 
• Understand the Matrix diagonalization and Matrix representation 
for symmetry operations. 
. 

9.2 Matrix representation theory 
During a symmetry operation, a set of 

coordinates of an atom in a molecule is transformed into a new set of 
coordinates. These two sets are related to one another in the form of a set 
of equations. This set of equation can be formulated in the form of a 
matrix. Each symmetry operation is represented by a matrix. Matrix 
representation of the symmetry operation is useful in the study of 
structural problems. 
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9.3 Matrix representation for symmetry operations    
The matrix representation for each kind of symmetry 

operation can be obtained as follows. 
 
 

Cn OPERATION 

Consider the figure shown, 
 
 
 

 
 
 

The position of an atom in a molecule is represented by 
the vector OP whose magnitude is ‘r’. Point ‘P’ corresponds 
to the coordinates x,y,z. If the molecule is 

Rotated in the clockways direction through an angle θ the 
atom changes its position from the point ‘P’ to the point ‘R’. 
point ‘R’ has a new set of coordinates namely x2y2z2. 

Consider the ∆POQ, it follows from the knowledge of 
trigonometry that, 

x1 = OQ = r Cos α 

y1  = PQ =  r sin α 

Consider the ∆ROS, 

Again, 
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x2 = OS = r cos β = r cos (α - θ) 

y2 = RS = r sin β = r sin (α - θ) 

z2 = z1 (since the rotation is carried out about the z-axis). 
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 0 

 0 

n 

n 

∴x2 = r cos α cos θ + r sin α cos θ = x1 cos θ + y1 sin θ + 0 

y2 = r sin α cos θ - r cos α sin θ = y1 cos θ + x1 sin θ + 0 

= 0 +0 + z1. 

Z2  = z1 

cos(α±β) = cos α cosβ ± sin α sin β 

sin (α±β) = sin α cosβ ± cos α sin β 
 
 

This set of equations can be formulated in the form of a matrix. 
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NOTES 

 cosθ sin θ 0 x1   x2  − sin θ cosθ 0 y  =  y  
  1   2  
 0 0 1 z1   z2  

 
 

Therefore the matrix representation for Cn axis is given as, 
 

 

 cosθ 
C  = − sin θ 

sin θ 0 
cosθ  

 0 0 1 
 
 

If the rotation is carried out in the anticlock direction, the matrix will be, 
 

 

cosθ 
C   = sin θ 

− sin θ 0 
cosθ  

   0 0 1 
 
 

For e.g. the matrix representation for a C2 axis is given by 
 

 
 cos180 sin 180 0 −1 0 0 

C = − sin 180 cos180 0 =  0 −1 0 
2  

 0 
 

0 
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 
1 

 
 0 

 
0 1 
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

 0 
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 cos120 

 
 

sin 120 0  −1 2 

 
 

3 2 0 
C  = − sin 120 cos120 0 

 
3 2 −1 2 0


 

3   = −  
NOTE  0 0 1  0  

 
 

For an identity operation, the new set of coordinates will be 
the same as that of the original. 

cos (90+θ) = sin θ 

cos (270+θ) = sin θ 

sin (90+θ) = cos θ 

sin (270+θ) = cos θ 

 
Therefore, 

x2 = x1 + 0 + 0 

y2 = 0 + y1 + 0 

z2 = 0 + 0 + z2 

 

1 0 0 x1   x2  0 1 0 y  =  y  
  1    2  

0 0 1 z1   z2  
 
 

∴ The matrix representation for the identity operation is 
given as, 
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1 0 

E = 0 1 

0 0 

INVERSION OPERATION 

0 
 
 

1 
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 0







x2 = -x1 + 0 + 0 

y2 = 0 – y2 + 0 

z2 = 0 + 0 - z2 
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−1 0 0  x1   x2  
 

NOTES  0 −1 0  y  =  y  
  1   2  

 0 0 −1 z1   z2  
 
 

∴ The matrix representation for the identity operation 
 

 

−1 

i =  0 

     0 

0 0  
−1  
0 −1 

 
 
 
 

REFLECTION OPERATION 

During a reflection operation, the coordinates corresponding to the 
reflection plane do not change the sign while that of the other coordinates 
change their sign. Therefore the matrices corresponding to the reflection 
operation is given below, 

 

 

 
ο xy 

1 0 

= 0 1 

0 0 

0  
 
 

−1 
 
 

 
ο yz 

−1 0 

=  0 1 

     0 0 

0 
 
 

1 
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 0

3σ 3



  
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ο xz 

1 

= 0 

0 

0 0 
−1  
0 1 

 

 
NOTE  

Sn OPERATION  

Sn operation involves rotation of the molecule about an 
axis through an angle followed by reflection in a plane 
perpendicular to the axis. ∴ the matrix for a Sn operation is 
obtained by multiplying the matrices corresponding to Cn and 
σxy provided z-axis is taken as the rotational axis. 

Sn = C z σxy 
 

 

 cosθ sin θ 01 0 0   cosθ sin θ 0  
S = − sin θ cosθ 00 1 0  = − sin θ cosθ 0  

n  
 0 

 
0 10 0 

 
−1 

 
 0 

 
0 −1 

 
 

S3
5  ≡ C   5 ≡ C 2σ 

 
 

9.4 Inverse of matrix 
 

A square matrix B is called the inverse of A if 

AB = BA = 1 

Where I is the unit matrix. Inverse does not exist if the matrix 
is singular. The inverse of the matrix A can be obtained by 
using the following rules: 

1. Compute the determinant of the matrix A. 
2. Interchange the elements a11 and a22. 
3. Change the signs of a12 and a21. 
4. Divide each element of the matrix thus 
formed by the determinant of A. 

 
 

 
Self-Instructional A = 

a11 a12  a a 
Material   21 22  
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1 

1 3

 3

−1 3 





 
The resulting matrix is the inverse of A and is 

represented as A-1. The inverse of the matrix B 
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B = 
3

 
 

− 2 
 
 

 
 

NOTES 
 

is obtained as follows. The determinant of the matrix B is equal to 14. 
Interchange of the elements 3 and 4 leads to the matrix. 

 

 

4 − 2 
  
  

 
 

When the signs of -2 and 1 are changed, the following matrix results: 
 

 
 4 2 
− 1  

 

 
Each element of this matrix is divided by 14 to obtain the inverse of B.B-1 
thus obtained is given below: 

 

 

B−1 = (1 4) × 
 4 2

 
 

 
 
 
 

9.5 Diagonalisation of a matrix 
 

The process of reducing a matrix to the diagonal matrix is referred to 
as diagonalisatoin. Let A be the square matrix of order n. P is the  
similarity transformation matrix which reduces A to the diagonal matrix D 
according to the equation. 

 
 

p-1 AP = D 
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−18  

3 2

− 3 



0 

  3 2 



  
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Let us consider the matrix A 
 
 

A = 
 − 7 

 

 
 
 

6  
14 

 

The similarity transformation matrix P 
 

 

P = 
2 1 

 
 
 

And its inverse P-1 
 

 

P−1 = 
 2 

 

−1 
 
 

 
 

can be used to reduce A to the diagonal matrix according to 
the equation 

 
 

P−1AP = 
 2

 −1 × 
 − 7 6  × 

2 1 
− 3  −18 

= 
2 

 

14   

0 
 
 
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9.6 Matrix representation for symmetry operations 
NOTES 

 
 

 

Using carthesian coordinates (x,y,z) or some position vector, we 
are able to define an initial position of a point or an atom. 

 

 
The initial vector is submitted to a symmetry operation and thereby 
transformed into some resulting vector defined by the coordinates 
x', y' and z'. In an algebraic context, this transformation is expressed 
a matrix which processes the initial position vector. We write 

 
final vector = Matrix * initial vector. 

 
The most primitive symmetry operation is the identity and yields a final 
vector identical to the initial vector. It is the unity matrix or identity 
matrix which leaves all coordiates unaffected. 

 

 
If we want to perform a reflection on the xy-plane (analogous to a 
horizontal plane σh), coordinate z changes the sign. 
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The matrices which are applied for performing a reflection 
on the yz-plane and xz-plane are the matrices σx and 
σy respectively. 

 

 
The inversion i relates the coordinates (x,y,z) with (-x,-y,-z) 
and is connected with the following matrix: 

 

 
Obviously, a twofold application of the inversion matrix 
yields the coordinates of the initial point (x,y,z) which is 
reflected by E = i*i. 

 

 
The matrix for a rotation about axis z by an arbitrary angle Θ 
is derived easily if we imagine two two-dimensional 
coordinate planes with identical origin but an angular 
difference of Θ between the axes. In our context of 
symmetry, we just need to deal with the discrete values of Θ 
= 2π/n for the angle of rotation. 

 

 
The matrices for the symmetry operations C2(z), C3(z), C4(z), 
C5(z) and C6(z) are obtained easily. The matrices for Cn

m as 
symmetry operation are calculated by an n-fold multiplication 
of matrix Cn. The symmetry operation C2 around axis x 
(x→x,y→-y, z→-z) and around axis y are (x→-x, y→y, z→- 
z): 
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As we know rotatory-reflection to be a combination of rotation and 
reflection, a matrix representation for this operation is easily to be 
derived.For instance, to obtain the matrix for rotatory reflection Sn(z) we 
multiply the matrices for the fundamental operations &sigmaz and Cn. 
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1.What is matrix representation? 
2.Givethe rules of Inverse of matrix? 
3.what is the equation of Sn OPERATION 

4. what are the types of symmetry operations in matrix representation? 
 
 

9.8 Answers to check your progress questions 
 

1. The symmetry operations in a group may be represented by a set of 
transformation matrices, one for each symmetry element g. Each 
individual matrix is called a representative of the corresponding symmetry 
operation, and the complete set of matrices is called a matrix 
representation of the group. 

 

2. 
• Compute the determinant of the matrix A. 
• Interchange the elements a11 and a22. 
• Change the signs of a12 and a21. 
• Divide each element of the matrix thus formed by the determinant 

of A. 
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Sn = C z σxy 

 
 

NOTE  cosθ sin θ 01 0 0   cosθ sin θ 0  
S = − sin θ cosθ 00 1 0  = − sin θ cosθ 0  

n  
 0 

 
0 10 0 

 
−1 

 
 0 

 
0 −1 

S3
5  ≡ C   5 ≡ C 2σ 

 
 

4. 
� Cn operation 
� S n operation 
� Inverse operation 
� Reverse operation 

 
 

 
9.9 Summary 

 

• A matrix representation theory describes all the 
symmetry operations that can be performed on a 
mathematical experision 
• The process of reducing a matrix to the 
diagonal matrix is referred to as diagonalisatoin. 
• Matrix representation of the symmetry 
operation is useful in the study of structural problems. 

 

9.10 Keywords 
 

Matrix representation-A set matrix of symmetry operations. 
Inverse of matrix -AB = BA = 1 

Operations - Cn ,S n ,Inverse Reverse operation 
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9.11 Self-assessment questions and exercises 
 

1. Explain in detail about Matrix representation theory and 
matrix multiplication 
2. Give a brief review Inverse of a matrix 
3. Explain matrix representation for symmetry operations 
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9.12 Further readings  
 

1. Chemical Application of Group Theory, F.A. 

Cotton, John Wiley and Sons Inc. New York,1971. 

2. Group theory and its applications to 

Chemistry, K.V. Raman, Tata McGraw-Hill Publishing 

Company,1990. 
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10.11 Further readings 

 
 

10.0 Introduction 
 

 

Representation is a set of matrices which represent the operations 
of a point group. It can be classified in to two types, which are 
reducible representations and irreducible representations. A 
character table is a 2 dimensional chart associated with a point 
group that contains the irreducible representations of each point 
group along with their corresponding matrix characters. It also 
contains the Mulliken symbols used to describe the dimensions of 
the irreducible representations, and the functions for symmetry 
symbols for the Cartesian coordinates as well as rotations about the 
Cartesian coordinates. In this context, we discuss in detail about 
reducible and irreducible representations,Character table of C2v 
and C3v point groups,the great orthogonality theorem and character 
and direct product representation. 

 
. 

 

10.1 Objectives 
 

 

After going through this unit, you will be able to: 
• Explain about the reducible and irreducible representations 
• Understand about the character table of C2v and C3v point 
groups 
• Understand the concept of the great orthogonality theorem 
and character 
• Learn about the direct product representation. 

 

152 



 

a


a

6  

1

0 0 0 0 0

4

10.2 Reducible and irreducible representations 
 
 

REDUCIBLE REPRESENTATION 

Reducible representation and its reduction can be undearstood by 
carrying out a similarity transformation. 

Let A,B,C,D and P be the similarity transformation matrix in this 
group.By similarity transformation the matrices A,B,C,D and P are changed 
into A′,B′,C′,D′ and P′ as 
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P-1 AP = A′ 

P-1 BP = B′ 

P-1 CP = C′ 

P-1 DP = D′ 

P-1 PP = P′= P 
 
 

If the resulting matrices can be blocked into smaller matrices, then the 
representation Г is called a reducible representation. For e.g. A′ can be blocked 
into a1′, a2′, a3′, a4′,……… a6′, as sub-matrices as 

 
 
 

 
a1 0 0 0 0 0  
 1  
 2  

A1 = 
 0

 

 0 
 0 
 
    0 

1 
3 

0 0 1 
 

0 0 0 

0 0 0 

0 0  
 

0 0  
1 0  
5  

0 a1  
 
 

A reducible representation result when the various symmetry operations are 
performed on all the sigma-bonds of a molecule for e.g. In BF3 molecule (D3h 
point group) the 12 symmetry operations of this group are divided into 6 
classes as 
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a
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3 2 3 3 

r  

0

1 



 
 

Unit-10 
Character table 

 
(σh). 

(E) (C3
1,C 2), (3C 1),(3σv),(S 1,S 5) and 

 
 
 

The three sigma-bonds  in  BF3  are considered  as vectors 
 

NOTE 
r1 , r2 and r3. By a symmetry operation R, the vectors r1 , r2 and r3  

r1, r2 and r3 are changed into r1′ ,r2′ and r3′ according to matrix 
equation. 

 

 
r1

 
 1  

 

r1  
[  ]   

 2  = 
1 

 3  

R r2  
r3 

 
→(a) 

 
 

Where [R] is the matrix for the operation R. The equations 
relating r1′ , r2′ and r3′ and r1, r2 and r3 are 

r1 = 1r + 0r  + 0r 
1 1 2 3 

 

r1 = 0r + 1r  + 0r 
2 1 2 3 

 

r1 = 0r + 0r  + 1r 
3 1 2 3 

 

In matrix form the above equation becomes 
 

1 1 0 0 r  1 
r1 = 0 1 0 × r  →(b) 
2  
1 0 

 
0 1 

 2  
r3  

 

From equations (a) and (b) we get 

1 0 

 1 

0 0 

 

0 
 
 

1 
 

As the matrix for identity operation. 
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For C3
1 operation the resulting vectors r1′ , r2′ and r3′ are related to 

r1, r2 and r3 by the equation. 
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r1 

r

r

0

3 



 

r

3 2 

0 1 0 0 0 1 0 

 0

1 





2 1 2 3 

r1 = 0r + 1r  + 0r 
1 1 2 3 

r1 = 0r + 0r + 1r Unit-10 
Character table 

r1 = 1r + 0r  + 0r 
3 1 2 3 

 

These equations can be represented in the matrix form as  
NOTES 

1 0 1 0 r  1 
r1 = 0 0 1 × r  →(c) 
2  
1 1 

 
0 0 

 2  
r3  

 
 

From (a) and (c), we get,  

0 
c1 = 0 

 

1 0 
0 1 

3  
1 

 
0 0 

 
 

Similarly we get reducible representation for 
 
 

σv σh S 1 C 1 

1 0 

 0 

0 1 

01 0 
 
 

00 0 

00 1 
 
 

11 0 

01 0 
 
 

00 1 

0 
 
 

0 
 
 

The characters of the matrices can be found by using the rule 
“The character of the matrix for a symmetry operation is equal to the 
number of unshifted vectors by the operation”. 

 
 

The number of vectors unshifted by the identity operation is three. 
 
 

1 

E = 0 

0 

0 0 
1  
0 1 
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The character for this matrix is also 3. 

By using the rule the characters for the different matrices 
of operations of BF3 are obtained. 

 

NOTE 
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Symmetry 
operations 

 
E 

 
1 

C3 

 
1 

C2 

 
σh 

 
σv 

 
1 

S3 

Character of 
the matrix 

3 0 1 3 1 0 

 

IRREDUCIBLE REPRESENTATION 

If it is not possible to find a similarity transformation 
matrix which will reduce the matrices of representation Г then the 
representation is said to be irreducible. All one-dimensional 
representations are always irreducible. 

Example: 

Considering the matrices of transformation for the Z-coordinate 
of a hydrogen atom in hydrogen molecule, which result by the 
symmetry operations of D∞h group. The operations of D∞h group 
are E, C∞, σv, C2 , σh, S∞ and i. From the figure the Z-coordinate is 
unaffected by E, C∞ and σv operations. 

 
 
 

 

 
 

The C∞ axis, vertical plane and horizontal plane in H2 molecule 
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The equations and matrices for the transformation of Z-coordinate of 
hydrogen atom by these operations are 

 
 

E.Z = 1Z 

E matrix = [1] 

C∞ . Z = 1Z C∞. 

matrix = [1] 

σv.Z = 1Z 

σv.matrix = [1] 
 
 

All the other operations of this group change the coordinate Z of 
hydrogen atom into –Z, we get 

c2 .z = −1z 

s∞ .z = −1z 

ο h .z = −1z 
i.z = −1z 

Unit-10 
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NOTES 

 
 

C2  matrix = [-1] 

s∞ matrix = [-1] 

ο h matrix = [-1] 

i matrix = [+1] 

 
The matrix representation thus obtained for the z-coordinate of the 

hydrogen atom in the hydrogen molecule is given below. 
 
 

E C∞ σv C2 S∞ σh i 

Г [1]  [1] [1]  [-1] [-1] [-1] [-1] 
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∑l = h 

 
 

Unit-10 
Character table 

 
 
 

NOTE 

This representation Г is irreducible since it is one- 
dimensional. 

 
 

Reducible representations and irreducible representation 
play an important role in obtaining solutions to problems of 
hybridization, molecular vibration, delocalization energies of Π 
electron system and so on. In all this applications the first step 
involves point group determination and formation of the 
reducible representations of the group. Every point group  
consists of a certain number of irreducible representations. 

 
 

The characters of matrices in the different irreducible 
representations of a point group can be listed in a table known as 
character table. The character table for a group can be 
constructed with the knowledge of properties of irreducible 
representation. The properties of irreducible representation can 
be obtained from the great orthogonality theorem. 

 
 
 

PROPERTIES OF IRREDUCIBLE REPRESENTATIONS 

A knowledge of the properties of irreducible representations is 
essential to construct the character table of a point group. 

Let us consider a point group consisting of h symmetry 
operations. These operations are divided into K classes. The 
irreducible representations are  denoted  as  Г1, Г2 ..................... Гk. l1, 
l2……..lk are dimensions of these representations. The 
orthogonalilty theorem is used to obtain the following rules for 
the irreducible representations. 

 
 

1. The number of irreducible representations in a group is 
equal to the number of classes in the group. 
2. The sum of the squares of the dimensions of the 
irreducible representations of a group is equal to the order of the 
group. 

K 
2 
i 
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i

2 3 

1 2 3 

i

l 2 + l 2 + l 2 ........= h 
1 2 3 

 
 
 
 

In a matrix of order l there are square elements thus each 
irreducible representation Гi will provide l 2 = h 
dimensional vector. The basic theorem requires  this set of  
l 2 + l 2 + l 2 ……… vectors to be mutually orthogonal. 
Since there can be more than h dimensional, h orthogonal 
vectors the sum of l1

2 + l 2 + l 2  ………  may  not  exceed 
h. 

3. The sum of the squares of the characters of identity operation in 
the irreducible representation is equal to the order of the group h. 
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Character table 
 
 
 

NOTES 

k 2 

∑(xi (E))  = h 
i =1 

∑[χ (R)]2   = h 
R 

4. The vectors whose components are the characters of two different 
irreducible representation are orthogonal. 

∑ χi (R)χ j (R) = 0 
R 

; Where i≠j 

5. In a given representation the characters of all matrices belonging 
to operation in the same class are identical. 

 

Symbols used for representing irreducible representation: 

1. Bethe’s method is used to label irreducible representation such as 
Г1 , Г2 , Г3. 

2. Mullikan’s method is based on symmetry of irreducible 
representation. 

3. Symbol A or B represents one dimensional representation. E 
represents two dimensional representations and Г represents three 
dimensional representation. 

4. If Г= +1 with respect to principle axis, the symbol A is used. If Г 
= -1 the symbol B is used. If there are several irreducible 
representation subscript 1, 2, 3 etc are used. 
Example: 

A1, A2, A3……………….. 

B1, B2, B3………………… 

E1, E2, E3………………… 

Г1, Г2, Г3…………………. 
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NOTE 

If there is only one representation the subscript one 
is not necessary. 

5. If the operation is inversion and Г = +1 the 
subscript g is used (g=gerade). If the operation is inversion 
and Г = -1 the subscript v is used (ungerade). 
6. If Г = 1 for all the symmetric operation of a point group 
A1 or Ag is used which is called totally symmetric 
irreducible representation. 
7. Single prime denotes that the irreducible representation 
is symmetric with respect to σh. 
8. Double prime denotes, that the irreducible representation 
is antisymmetric with respect to σh. 

 

10.3 Character table of C2v and C3v point groups 
 

CHARACTER TABLE 

The characters of matrices in the different irreducible 
representations of a point group can be listed in a table known as 
character table. 

 
 

CONSTRUCTION OF CHARACTER TABLE FOR C 2V 
POINT GROUP 

C2V point group consists of 4 elements such as E, C2, σvxz and 
σvyz, each is in a separate class. Hence, as per rule 

(1) i.e. the number of irreducible representations of a group is 
equal to the number of classes of the group. 

C2V     E  C2   σv(xz)  σv(yz) 

Г1 

Г2 

Г3 

Г4 
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2 3 

i

 

 
 

There are 4 irreducible representations of this group but it is also required 
as per rule. 

 
 
 
 
 
 

(2) “The sum of the squares of the dimensions of the irreducible 
representation of a group is equal to the order of the group h”. Thus we 
are looking for a set of 4 ‘+ ve’, integers , l1, l2, l3 and  l4  which satisfy  
the relation, l12+ l 2+ l 2+ l42  = h. clearly the only solution is l1=  l2= l3  =  
l4 =1. Thus the group C2V have 4 one dimensional irreducible 
representations. 

 
 

On the basis of the vector properties of the representations and the rules 
derived above, one suitable vector in four space which has a component 
of one corresponding to Г1 will obviously be 1,1,1,1 for 

∑[χ (R)]2   = h 
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R 

 

 

12 +12 +12 +12 = 4 
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Thus satisfying rule 

(3) i.e. the sum of the squares of their characters in any 
irreducible representation equals h. 

 
C2V E C2 σv(xz) σv(yz) 

 

Г1 1 1 1 1 

Г2 1 
  

Г3 1 
  

Г4 1 
  

 
 

Now all other representations will have to be such that 
Σ[X i(R)]2 =h=4 which can be true only if each Xi(R)= ±1. 
Moreover in order for each of the other representations to be 
orthogonal to Г1. According to the rule 

(4) i.e. the vectors whose components are the characters of two 
different irreducible representation are orthogonal. 

 
i.e. Σ Xi(R) Xi  (R) = 0 when i≠j. 

R 

There will have to be 2 “+1’S” and 2”-1’S”. 

(1) (1)+ (1) (-1)+ (1) (-1) +(1) (1) = 0 
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C2V E C2 σv(xz) σv(yz) 

Г1 1   

Г2 1 
  

Г3 1 
  

Г4 1 
  

 



 

3

2

C3V 

Г1 

Г2 

E 

1 

1 

2C3 3σV 

Therefore we can write the other irreducible representation as follows. 
 
 
 

C2V E C2 σV(XZ) σV(yZ) 

Г1 

Г2 

Г3 

Г4 

1 1 1 1 
1 -1 -1 1 
1 -1 1 -1 
1 1 -1 -1 

 

CONSTRUCTION OF CHARACTER TABLE FOR C 3V POINT GROUP 

C3V point group consists of 6 symmetry elements. E, C 1, C3
2, σV, σV' 

and σV''. It can be listed by classes as E 2C3, 3σV. Rule (1) is the number of 
irreducible representation = number of classes. 

 
 

Unit-10 
Character table 

 
 
 

NOTES 

 

 
Г3 

 
 

We therefore known that there are 3 irreducible representations, by rule (1), if 
we denote the dimensions by l1, l2 and l3 we have l12+ l 2+ l32  = h= (6). The  
only values of the li which will satisfy this requirement are 1,1and 2. 

 
 
 

Г3 

 
 
 
 
 

Thus as by rule (2), the sum of the squares of the dimensions of the irreducible 
representation of a group is equal to h. 
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NOTE 

12 +12 +22 = 1+1+4 = 6 

Always in any group there will be a one dimensional 
representation whose character is equal to +ve one. Therefore 
one dimensional irreducible representation in C3V point group is. 

 
 

C3V E 2C3 3σV 
 

 
 
 

Thus by rule (3) 

The sum of the squares of the characters of identity operation in 
the irreducible representation is equal to the order of the group h. 

Σ[X i(R)]2 =h = -1(1)2 + 2(1)2 + 3(1)2 = 6 

As per rule (4), the vectors whose components are the characters 
of two different irreducible representations are orthogonal. 

We now look for a 2nd vector in space whose components are 
equal to + or -1which is orthogonal to Г1 . The components of 
such a vector must consists of 3’+1’S’ and 3’-1’S’. Since X(E) 
must always be ‘+ve’ and since all elements in the same class 
must have representations with the same character, the only 
possibility here is 
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Г1 

Г2 

Г3 

1 

1 

2 

1 1 
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Now our 3rd representation will be of two dimension i.e.X3(E) = 2. In 
order to find out the values of X3(C3) and X3(σV), we make use of orthogonality 
relationship. 

 
 

∑ χ1(R)χ3(R) = 0 
R 

 

∑χ1(R)χ3(R) = (1)(1)(2) + (2)(1)(χ3C3 ) + (3)(1)(χ3σV ) = 0 
R 

= 2 + 2χ3C3 + 3χ3σV = 0 

∑χ2(R)χ3(R) = (1)(1)(2) + (2)(1)(χ3C3 ) + (3)(−1)(χ3σV ) = 0 
R 

= 2 + 2χ3C3 − 3χ3σV = 0 
 
 

2χ3C3  + 3χ3σV 

2χ3C3  − 3χ3σV 

= −2 → (1) 
= −2 → (2) 

 

4χ3C3 + = −4 
 

 

χ C = 
− 4 

= −1 
3    3 − 4 

 

Substitute χ3C3 = -1 in equation (1) 

2(-1) +3 χ3σ v =-2 

-2+3 χ3σ v =-2 
 
3 χ3σ v = -2+2 
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C3V E 2C3 3σV 

 
Г1 

 
1 

 
1 

 
1 

Г2 1 1 -1 

Г3 2   



 

C3V E 2C3 3σV 

m n 

m n 

j ' δ

3 χ3σ v = 0 

Unit-10 
Character table 

 
χ3σ v = 0 

 

 
 

NOTE 
Thus the complete set of characters of the irreducible 
representation is 

 
 
 
 
 
 
 

Г1 1 1 1 

Г2 1 1 -1 

Г3 2 -1 0 
 
 
 
 

10.4 The great orthogonality theorem and character 
 

This theorem is concerned with the elements of matrices 
constituting the irreducible representation of a point group. Let us 
consider two irreducible representations i and j of a point group. 
Let li and lj be the dimensions of these representations, h is the 
order of the point group. R denotes a particular symmetry 
operation in the group. (Гi ( R))mn is an element in the mth row  
and nth column of a matrix in the ith irreducible representation. 
The complex conjugate of the element in the m′th row and n′th 
column of a matrix in the jth irreducible representation is denoted 
by (Гj( R))* ′ ′. 

The elements (Гi ( R))mn and (Гj( R))* ′ ′ are related to h, li and lj 
by the orthogonality theorem as follows. 

∑(Ti (R))mn (T (R))∗
m'n ' = (h l il j )δijδ 

 
 
mm nn' 

R 

 

δij, δmm’, δnn’ denote the kronecker delta symbols. The kronecker 
delta symbol δij has the meaning δij = 0 for i≠j and δij = 1 for i = j. 
This theorem covers three cases. 
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1) If (Гi ( R))mn and (Гj( R))mn represent two real elements 
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in the mth row and nth column of the matrix for the operation R in 
the representations i and j, then 

 
 

Unit-10 
Character table 

h l il j  )δ ij    = 0∑ (Ti (R))mn (Tj (R))mn   = (h 
R 

l il j )δij = 0 → (a) 
 

 
group 

The equation (a) can be applied to the irreducible representation of a 
 

containing the operations E and A. The matrix for the operations E and 

 
NOTES 

A in the two representations are given below: 
 

E = 
E11 E12  A = 

 A11 A12  
E E    A A   
 21 22   21 22  

 
 

E = 
Exx Exy  A = 

 Axx Axy  
E E    A A   
 yx yy   yx yy  

Equation (a) is applied to these representations. 

Equation E11Exx + A11Axx = 0 is obtained as a result. 

 

2) If (Гi ( R))mn is the element in the mth row and nth column of a matrix for 
operation R in the ith representation and (Гj( R))mn is the element in the 
m’th row and n’th column of a matrix for operation R in the same 
representation, then 

 
∑(Ti (R))mn (Tj (R))

m' n'    = (h li )δmm' δnn'    = 0 
R 

 

If (Гi ( R))mn is the element in the mth row and nth column of a matrix for 
operation 

R in the ith irreducible representation, then 

∑(Ti (R))mn 
)2 = h l 

R 
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10.5 Direct product representation 
 

Suppose that R is an operation in the symmetry group of a 

molecule and X1, X2, X3 ……. Xm and Y1, Y2 ….Yn .are the two 

set of functions which are bases for representations of the 

group. 

 

RX i = ∑ Xij X j 
j =1 

 
 

 

RYk   = ∑YlkYl 
l =1 

 
 
 
 

It is also true that 
 

m n 

RXiYk = ∑∑ XijYlk X jYl 
j =1 l =1 

 
 

= ∑∑ Z jl ,ik X jYl 

j l  
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Thus the set of functions XiYK, called the direct product of 

Xi and Yk also forms a basis for a representation of  the 

group. The zil,ik are the elements of a matrix of order (mn) x 

(mn). 

We now have a very important theorem about the 

characters of the L matrices for the various operations in the 

group. 

“The characters of the representations of a direct product 

are equal to the products of the characters of the 

representations based on the individual sets of functions”. 

The above theorem can be explained by taking the 

example C3V point group. The direct product 

representations of the irreducible representations of a 

group can be obtained using the character table for the 
 

168 

n

m



 

 

 
 
 
 
 
 
 
 
 
 
 

The direct product representation A1A2 is given by 
 

 E 2C3 3σV 

1x1 1x1 1x (-1) 

A1A2 1 1 -1 

 

 

Similarly, the direct product representations A,E,A2E and E
2
 are obtained 

as 
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 E 2C3 3σV 

A1E 2 -1 0 

 
A2E 

 
2 

 
-1 

 
0 

 
 

E
2
 4 1 0 

 

 

The product representations A1, A2, A,E and A2E are irreducible 

representations. The direct product representation E
2
 is reducible. 

The representation of a direct product, ГAB , will contain the totally 

symmetric representation only if the 

irreducible ГA = irreducible ГB 
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C3V E  2C3 3σV 

 

A1 

  

1 

 

1 

 

1 

A2 
 1 1 -1 

A3 
 2 -1 0 
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Let ГA = ГB =A2 in C3v group , then we get 

ГAB = A2 A2 = A1→(a) 

Thus in equation (a), the product representation ГAB is 

totally symmetric. 
 

 

 

 
 

10.6 Check Your Progress 
 

1. What is meant by representation? 
2. Define character table. 
3. What is the concern of great orthogonality theorem? 
4. How much elements represent in C2V point group? 

 

10.7 Answers To Check Your Progress Questions 
 

1. Representation is a set of matrices which represent the 
operations of a point group. It can be classified in to two types, 
which are reducible representations and irreducible 
representations. 

 
2. A character table is a 2 dimensional chart associated with a 
point group that contains the irreducible representations of each 
point group along with their corresponding matrix characters. It 
also contains the Mulliken symbols used to describe the 
dimensions of the irreducible representations, and the functions 
for symmetry symbols for the Cartesian coordinates as well as 
rotations about the Cartesian coordinates. 

 
3. This theorem is concerned with the elements of matrices 
constituting the irreducible representation of a point group. 

 
4. C2V point group consists of 4 elements such as E, C2, σvxz and 
σvyz, each is in a separate class. 

 

10.8 Summary 
 

• In this unit describes the character table for a group can be 
constructed with the properties of irreducible representation. It can 
be found from the great orthogonality theorem. 
• This unit is concerned with the elements of matrices constituting 
the irreducible representation of a point group. It can expressed in 
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the best way for our understanding. 
 

 

10.9 Keywords 
 

• Types of representation - reducible representations and irreducible 
representations. 

•  Character table - It is a 2 dimensional chart associated with a point 
group that contains the irreducible representations of each point group 
along with their corresponding matrix characters. 

• C2V point group - It consists of 4 elements such as E, C2, σvxz and σvyz, 
each is in a separate class. 

 

10.10 Self-Assessment Questions and Exercises 
 

. 
1. Give a brief review about reducible and irreducible representations. 
2. Give a brief review about Character table of C2v and C3v point groups. 
3. Explain about the great orthogonality theorem. 
4. Explain direct product representation. 

 
 

10.11 Further Readings 
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2.  Group theory and its applications to Chemistry, K.V. Raman, 
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3. Irreversible Thermodynamics, J. Rajaram and J.C. Kuriacose, Lal 
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Structure 
11.0 Introduction 
11.1 Objectives 
11.2 Application of group theory to IR and Raman spectra 
11.3 Application of group theory to electronic spectra (HCHO and 
C2H4) 

11.4 Check your progress 
11.5 Answers to check your progress 
11.6 Summary 

11.7 Key words 
11.8 Self Assessment and exercise 
11.9 Further Reading 

 

11.0 Introduction 
 

 

Group theory is an important component for understanding the 
fundamentals of vibrational spectroscopy. The molecular or solid 
state symmetry of a material in conjunction with group theory form 
the basis of the selection rules for infrared absorption and Raman 
scattering. In this unit we learn about the Application of group theory 
to IR and Raman spectra - H2O and NH3 molecules and application of 
group theory to electronic spectra (HCHO and C2H4) 

 

11.1 Objectives 
 

 

After going through this unit, you will be able to; 

� To know the Application of group theory to IR and Raman spectra - 
H2O and NH3 molecules 

� Understand the Application of group theory to electronic spectra 
(HCHO and C2H4) 

 

11.2 Application of group theory to IR and Raman 
spectra - H2O and NH3 molecules 
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It is not necessary for a molecule to have a permanent electric 
dipolemoment for IR absorption. But during the absorption, there 
must be a change in the dipolemoment of the molecule. This change 
in the dipole moment can be predicted in terms of symmetry using 
group theory. For this purpose direct product representation of the 
functions involved in the transition moment integral must be 
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v 

φ g PΛφ i dτ 

= e φ g xφ i dτ 

= e φ g yφ i dτ 

P = e φ g zφ i dτ 

determined. If the value of the integral is non-zero, the transition is 
allowed and if it is equal to zero, it is forbidden. 

The transition moment integral is given by 
 
 

∫ V V 
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Φv
g and Φ i are the wavefunctions of the ground and ith excited state of the 

vibrational level. 

P^ is the electrical dipolemoment operator. 

Since dipolemoment is a vector quantity and also it is the product of charge 
and distance between the charges, it can be written as, 

P = Px  + Py  + Pz 

x ∫ V V 

y ∫ V V 

z ∫ V V 

where, ‘e’ is the charge and x,y and z are the distances in the respective 
directions. 

The value of the above integrals in general can be obtained by considering 
the symmetries, of the functions involved in the integral. Taking Pn as an 
example, the direct product representation of Φv

g , X and Φv
j must be totally 

symmetric in order that Px ≠0. 

Since Φv
g is always totally symmetric, Φv

i must have the same symmetry 
that of x. In general the symmetry corresponding to excited mode of vibration 
(Φv

i) must match with the symmetry of any one of the Cartesian coordinates x,y 
and z for a molecule to be IR active. The above concept can be applied in the 
case of H2O and NH3 molecules. 

 
 

WATER MOLECULE 

There are three vibrational modes in the water molecule. Two of them have 
A1 symmetry and one has B2 symmetry. Using group theory, it is possible to 
predict which of them are IR active. 
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A1 mode: 

Px: Direct product of Гg Гx Гi = A1B1A1 = B1 ∴Px = 0 

Py: Direct product of Гg Гy Гi = A1B2A1 = B2 ∴Py = 0 

Pz: Direct product of Гg Гz Гi = A1 A1 A1 = A1 ∴Pz ≠ 0 

 
Thus A1 mode in water is IR active since Pz≠ 0 

 
 

B2 mode: 

Px: Direct product of Гg Гx  Гi = A1B1B2  = A1A2  = A2  ∴Px  = 0 

Py: Direct product of Гg Гy Гi = A1B2 B2 = A1A1  = A1 ∴Py ≠ 0 

Pz: Direct product of Гg  Гz  Гi = A1 A1 B2  = B2  ∴Pz  = 0 

Therefore B2 mode is also IR active since Py≠0 

AMMONIA MOLECULE 

Ammonia molecule has four modes of vibrations, two of them 
have A1 symmetry and the other two have E symmetry. 

A1 mode: 

In the case of NH3, the coordinates X and Y together 
transforms into E representations. 

PxPy : Direct product of Гg Гx,y Гi = A1EA1 = E ∴Px Py = 0 

Pz: Direct product of Гg Гz Гi = A1 A1 A1 = A1  ∴Pz≠  0 

Since Pz≠ 0, A1 mode is IR active. 

E mode: 

PxPy : Direct product of Гg Гx,y Гi = A1EE = E2 (4 1 0) 

(4 1 0) corresponds to the characters of the reducible 
representations. This can be split into various irreducible 
representations using standard reduction formula. Such an attempt 
shows that E2 = A1 + A2 + E. 

Since A1 forms a part of the Px,y must be totally symmetric. 

∴PxPy≠ 0 
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= φ yα Λφ i dτ 

 
Pz :Direct product of Гg Гz Гi = A1 A1 E = E 

 
 

∴Pz= 0 
 
 

Since we found that Px Py ≠ 0, E mode is also IR active. 
 
 

It is therefore observed that all the four modes of NH3 molecule are IR 
active and all the three modes of H2O molecule are IR active. 

 
 

APPLICATIONS OF GROUP THEORY TO VIBRATIONAL RAMAN 
SPECTRA 

A charge in the dipolemoment causes the molecule to be IR-active. The 
change in the induced dipolemoment causes the molecule to be Raman active. 

The induced dipolemoment is defined as 

µi = αE 

where, α = polarisibility, E = Electric field strength 

Since a change in the induced dipolemoment will result in the change in the 
polarisibility, a molecule shows Raman spectra. If there is a change in the 
polarisibility due to the absorption of radiation. In order to apply group theory to 
Raman spectra, the value of the transition moment integral has to be calculated. 
The integral is given as, 
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i ∫ V V 

where α^ = polarisibility operator 

The polarisibility operator is a measure of the quadratic functions of the 
cartesian coordinates (x2, y2, z2, xy,yz,zx). For a molecule to be Raman active, 
the normal vibration should have the same irreducible representation as any one 
of the quadratic functions of the Cartesian coordinate. In other words, the direct 
product representation of any one of the following should be totally symmetric. 
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Г1 Гxy Г2 Г1 Гx2 Г2 

Г1 Гxz Г2 Г1  Гy2 Г2 

Г1 Гyz Г2 Г1  Гz2 Г2 

 
 

[Г1  is always A1] 
 
 

This can be verified by considering water and ammonia molecule. 
 
 

WATER MOLECULE 

There are three vibrational modes for water molecule. Their 
representations are: 

Tvib  = 2A1  + B2 

A1 mode 

In order to find out the vibrational mode due to ‘A1’ is Raman 
active or not, the direct product representations for the following 
are determined. 

 
 

Г1 Гxy Г2 =  A1A2A1  = A2 Г1  Гx2 Г2 

Г1  Гxz  Г2 =  A1B1A1 = B1 Г1 Гy2 Г2 = A1 A1 A1= A1  

Г1  Гyz  Г2 = A1B2A1 = B2 Г1 Гz2 Г2 

 
 
 

It is noted that, among the 6 representations, three are totally 
symmetric. Therefore, A1 mode is Raman active. 
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Г1 Гxy Г2 
Г1 Гx2 Г2 

Г1 Гy2 Г2 

B2 mode 

In a similar way the direct product representations involving ‘B2’ mode are 
determined as follows: 

 
 

Г1  Гxy Г2  =  A1A2B2 = B1 Г1 Гx2 Г2 

Г1  Гyz  Г2 =  A1B2B2 = A1 Г1 Гy2 Г2 = A1 A1 B2= B2 

Г1 Гxz Г2 = A1B1B2  = A2 Г1 Гz2 Г2 

 
 

It is observed that only one among the six leads to totally symmetric 
representation. Therefore B2 mode is also Raman active. 

 
 

AMMONIA MOLECULE 

There are four vibrational modes in ammonia molecule. In terms of group 
theory, their representations have been known to be 2A1 + 2E; Group theory i, 
applied to verify whether theses modes are active or not. 

A1 mode 

The direct product representation corresponding to ‘A 1’ mode is determined 
in the case of the following, 

 

 

Г1 Гxz Г2 = A1 E A1 = E 

Г1 Гyz Г2 = A1  E A1 = E Г1 Гz2 Г2 = A1 A1 A1 = A 
 
 

Among these, only one is totally symmetric and there is no way of finding 
out the representation for three of them (xy, x2, y2) 

E mode 

The direct product representation corresponding to ‘E’ mode is determined in 
the case of the following. 

Г1  Гxy Г2} = A 1EE = E2 Г1 Гz2 Г2 = A1A1E=E 

Г1 Гyz Г2}  
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The result shows that one representation is not totally 
symmetric and the other two gives a reducible representation (E2 = 
4 1 0). This reducible representation can be split into number of 
representations and among them one is totally symmetric. 
Therefore ‘E’ mode is called Raman active. 

In the case of water and ammonia molecule, the corresponding 
vibrational modes are both IR and Raman active. But in the case 
of centro symmetric molecules (molecules having centre of 
symmetry) like CO2, acetylene, N2F2, if the vibrational modes are 
Raman active then they will be IR inactive and vice versa. This 
statement is known as mutual exclusion group. 

 
 
 
 

6.2 Application of group theory to 
electronic spectra (HCHO and C2H4) 

 

UV, Visible or electronic spectroscopy is mainly 
applicable to organic molecules. In such cases, transitions occurs 
between electronic energy levels. In the case of molecules, the 
electronic energy levels, correspond to molecular orbital energy 
levels. The various molecular orbitals are σ and π (bonding 
molecular orbitals), σ* and π* (antibonding molecular orbitals), n 
(non-bonding). The energy level diagram for these orbitals are 
shown in the figure, 

 
 
 

 

 
Group theory can be applied to electronic spectroscopy by 
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considering HCHO (formaldehyde) molecule as an example. 
Before we apply this theory, the molecular orbital energy diagram 
for the carbonyl group -C=O of formaldehyde should be taken in 
to consideration. 

The diagram is shown in the figure. 
 
 
 

 
 

 
The possible transition are n-π* and π-π*. 

 
 

By applying group theory, it is possible to find out which type of transition is 
allowed or not. For the electronic transitions to be allowed, the following 
integrals must take non-zero value. 
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∫φg xφidτ 

∫φg yφidτ 

∫φg zφidτ 
 
 

where, Φg and Φi are the wave functions for the ground state and excited states 
respectively. 

For the integral to take non-zero value, the direct product representation of 
Φg and Φi 
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must have the same symmetry as that of any one of the Cartesian 
coordinates namely x, y, z. 

 
 

n-π* transition: 

The arrangement of electrons in the ground and excited state 
during this type of transition is shown below. 

φ  = (π 2 )(n2) 

φ = (π 2 )(n)(π ∗ ) 

An electron in a molecular orbital has a particular irreducible 
representation. If the two electrons remain in the same orbital, the 
product of these representation is always totally symmetric. 
Therefore it will corresponds to ‘A1’ representation. In such a case, 
the ground state representation is given as 

 
 

Tg = A1 A1  = A1 

 
 

In the excited state wave function, we find that there is one 
electron each in the non-bonding and π- antibonding orbitals. In 
order to find out the representations corresponding to the electrons 
in n and π* orbitals, the shapes of these orbitals should be 
considered. 

The figure shows the shapes of π, π* and n orbitals. 
 
 
 

 
 

Formaldehyde molecule belong, to C2V point group. The 
various operations present in this group are E, C2, σxz and σyz. 
These operations should be performed on π, π* and n orbitals in 
order to find out the characters corresponding to each operation. 
Such an attempt leads to the following table. The last column of the 
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table gives the Mulliken symbol for each orbital. 
 
 
 

 E C2 σxz σyz Mulliken 
symbol 

N 1 -1 -1 1 B2 

π* 1 -1 1 -1 B1 

π 1 -1 1 -1 B1 

 

Based on this table, the representation for the excited state is given as 

Ti = A1B2B1 = A2 

 
 

∴ The direct product representation for the ground and excited state is A1.A2 

= A2. 
 
 

But this representation (A2) does not correspond to the representation of any 
one of the Cartesian coordinates. This shows that all the integrals take the value 
equal to zero, and hence n-π* transition is not electronically allowed. 

But n-π* has been found to be magnetically allowed. The integrals 
corresponding to the components of the magnetic dipolemoment operator are 
given below, 
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∫φg µ (x)φidτ 

∫φg µ( y)φidτ 

∫φg µ(z)φidτ 
 
 

The representation for the µ(x) , µ(y), µ(z) are Rx,Ry and Rz which 
corresponds to B2, B1 and A2 respectively. Since the direct product 
representation of Φg and Φi is A2 as seen earlier which  
corresponds to one of the representations here. ∴ one of the 
integrals take non-zero value and hence n-π* transition is 
magnetically allowed. But the signal corresponding to this 
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transition will be very weak because the interaction of the electric 
component of electromagnetic radiation with formaldehyde will 
be very much greater than that of the magnetic component. 

 
 

π-π* transition: 

The arrangement of electrons in the excited state is 

Φi = (n) (n2) (π*) 

By a similar argument the representation corresponding to 
excited state is arrived at 

Ti = B1 A1 B1 = A1 

∴ The direct product representation of the ground and excited 
state is 

A1  A1  = A1 

This direct product representation corresponds to the 
representation of the z-axis. 

∴ One of the integrals take non-zero value. 

Hence π-π* transition is electronically allowed. 
 

11.4 Check Your Progress 
 

 

1. Define n-π* transition 
2. How to prove water IR active? 
3. What are transition present in UV, Visible or electronic 
spectroscopy? 

 
 

11.5 Answer To Check Your Progress 
 

1. The arrangement of electrons in the ground and excited state 
during this type of transition is shown below. 

φ  = (π 2 )(n2)  φ = (π 2 )(n)(π ∗ ) 
 

2. There are three vibrational modes in the water molecule. Two 
of them have A1 symmetry and one has B2 symmetry. Using group 
theory, it is possible to predict which of them are IR active. 
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3. UV, Visible or electronic spectroscopy is mainly applicable to 
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organic molecules. In such cases, transitions occurs between 
electronic energy levels. In the case of molecules, the electronic 
energy levels, correspond to molecular orbital energy levels. The 
various molecular orbitals are σ and π (bonding molecular 
orbitals), σ* and π* (antibonding molecular orbitals), n (non- 
bonding 

11.6 SUMMARY 
• Spectroscopy studies like IR and Raman the interaction of light and 

matter. The symmetry operations of a molecule form a mathematical 
group. Matrices that multiply the same way as the members of a group 
form a representation of the group. 

• Acorrding to this reducible representation can be split into number of 
representations and among them one is totally symmetric . where the 
characters are the traces of the matrices of the representations. 

 
11.7 Keywords 
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IR absorption - It is not necessary for a molecule to have a permanent electric 
dipolemoment for IR absorption. 
Electronic spectroscopy - UV, Visible or electronic spectroscopy is mainly 
applicable to organic molecules. In such cases, transitions occurs between 
electronic energy levels 

 
11.8 Self Assessment Questions And Exercises 

1. Define application of group theory to IR and Raman spectra? 
2. Explain application of group theory to electronic spectra (HCHO and C2H4) 

 
11.9 Further Reading 

 
 

1. Chemical Application of Group Theory, F.A. Cotton, John Wiley 

and Sons Inc. New York,1971. 

2.  Group theory and its applications to Chemistry, K.V. Raman, Tata 

McGraw-Hill Publishing Company,1990. 
. 
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CHEMICAL KINETICS 
Unit-12: REACTIONS IN SOLUTION 

 

Structure 
12.0 Introduction 
12.1 Objectives 
12.2 Reactions in solution 
12.3 Factors which influence the reaction rates in solution 
12.4 Application of ARRT to solution kinetics. 
12.5 Bronsted – Bjerrum equation Chelate effect 
12.6 Check your progress questions 
12.7 Answers to check your progress questions 
12.8 Summary 
12.9 Keywords 
12.10 Self-assessment questions and exercises 
12.11 Further readings 

 

12.0 Introduction 
 

Chemistry, by its very nature, is concerned with change. 
Substances with well-defined properties are converted by 
chemical reactions into other substances with different properties. 
For any chemical reaction, chemists try to find out 

a) The feasibility of a chemical reaction which can be 
predicted by thermodynamics (as you know that a reaction with 
∆G < 0, at constant temperature and pressure is feasible); 
b) (b) extent to which a reaction will proceed can be 
determined from chemical equilibrium; 
c) (c) speed of a reaction i.e. time taken by a reaction to 
reach equilibrium. 

Along with feasibility and extent, it is equally important to know 
the rate and the factors controlling the rate of a chemical reaction 
for its complete understanding. For example, which parameters 
determine as to how rapidly food gets spoiled? How to design a 
rapidly setting material for dental filling? Or what controls the rate 
at which fuel burns in an auto engine? All these questions can be 
answered by the branch of chemistry, which deals with the study of 
reaction rates and their mechanisms, called chemical kinetics. The 
word kinetics is derived from the Greek word ‘kinesis’ meaning 
movement. Thermodynamics tells only about the feasibility of a 
reaction whereas chemical kinetics tells about the rate of a 
reaction. For example, thermodynamic data indicate that diamond 
shall convert to graphite but in reality the conversion rate is so 
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slow that the change is not perceptible at all Kinetic studies not 
only help us to determine the speed or rate of a chemical reaction 
but also describe the conditions by which the reaction rates can be 
altered. The factors such as concentration, temperature, pressure 
and catalyst affect the rate of a reaction. At the macroscopic level, 
we are interested in amounts reacted or formed and the rates of 
their consumption or formation. At the molecular level, the 
reaction mechanisms involving orientation and energy of 
molecules undergoing collisions, are discussed. In this Unit, we 
shall be dealing with average and instantaneous rate of reaction 
and the factors affecting these. Some elementary ideas about the 
collision theory of reaction rates are also given. However, in order 
to understand all these, let us first learn about the reaction rate. 

 
SOLUTION KINETICS 

When a reaction takes place in solution 

• The solvent is in larger than the reactant 
• Solvent concentration is constant during the course of reaction. 
• Theories of solution kinetics are more complicated than gas phase. 
• In solutions the collision between the reactants are termed as encounter. 
• Some of the reaction has same rate in solution phase as well as gas phase Eg: 
N2O5, O3 decomposition etc. 
The rate of reaction in gas phase and solution phase are equal only in ideal 
solution 

12.1 Objectives 
 
After going through this unit, you will be able to: 
Understand about the kinetics and rate of the reaction 
Understand the reaction rate in solution 
Explain the concept of Bronsted and Bjerrum equation 

12.2 REACTIONS IN SOLUTION 
There are many reactions which take place more or less at the same rate in 

gaseous and solution phases (e.g. decomposition of CH2I-CH2I and N2O5 in 
CCl4 solvent; isomerization of d-pinene). This shows that the reactions proceed 
by the same mechanism in both the phases. There are however many exceptions. 

Example: the reaction between (C2H5)3N and C2H5Br to give a quaternary 
ammonium salt is considerably faster in polar solvents like nitrobenzene than in 
non-polar solvents or in the gaseous phase. The activated complex in the 
reaction is more polar than the reactants. 
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12.3 FACTORS WHICH INFLUENCE  THE 
REACTION RATE IN SOLUTION  
(i) For ionic reaction 

A. Reaction between an ion and molecule the 
Arrhenius frequency factor has normal value. 

B. Reaction between same sign, the value of “A” is much 
lower. 

C. Reaction between opposite sign, higher the value of “A”. Hence  
the frequency factor is the direct measure of rate of the reaction. 
(ii)  Approaching of species to each other 

Rate of approaching of reacting species to each other depend upon 
the rate of diffusion of the two species through solvent diffusion- 
controlled process that are very fast. The diffusion-controlled 
process depends upon the viscosity of the medium. In low viscous 
medium, higher the diffusion takes place. 

(iii)  Cage effect 

The reactant species after the collision are held together by solvent 
species for about 10-8 to 10-10s. During this time lag, the reacting 
molecules collide with each other or make a suitable direction for 
the favorable reaction to take place. The reacting molecule held 
together for a period of time by solvent cage is said to be cage 
effect or frank-Rabinowitch effect. 

(iv) Energy and orientation of reacting species 

This is controlled by the nature of species. In general, the reaction 
would be fast in a solution in which the activated complex is more 
stable. Activated complex is more stable in polar solvent when it is 
polar and vice versa. 

(v) Effect of Solvation 

Solvation is based on polarity, higher the dipole will more 
solvated by polar solvent. 
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Here, products are two separate ions and activated complex has 
partial charge as above. In polar solvent such as nitrobenzene there 
is more solvation of activated complex than the reactant. The 
effect of solvation lowers the activity co-efficient of activated 
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complex (γ± a≠) and thus rate become high. 

On the other hand, 

Y ∗ + RX + ⇔ (Y δ 
− 

..............R ............ X δ 
+ )→ YR + X 

Here, there is decrease in polarity as the activated complex is formed. Activated 

complex is less solvated than reactant in polar solvent. And thus, decreases the 
rate. 

12.4 APPLICATION OF ARRT TO SOLUTION KINETICS 
For a general bimolecular reaction, 

A + B ⇔ X ≠ → Pr oduct 
≠ 

k ≠ =  
a (∴a = activity) 

aA ⋅ aB 

 

≠  = 
γ ≠C ≠ 

→ ( ) K 
γ  C   ⋅ γ  C 

1
 

A     A B B 
 

C ≠ = K ≠ 
γ Aγ B ⋅ C C → (2) 
γ ≠ A B 

 
Rate of the reaction is rate of decomposition of activated complex i.e.,X≠ → P 

X≠ must have one of its vibrational degrees of freedom which would be highly 
unstable. This is responsible for the decomposition of X≠ in product. 

Rate = γ [C ≠ ] 
γ = frequency of vibration 

= γK ≠ 
γ Aγ B  ⋅ C C  → (3) 
γ ≠ A B 

 
Any simple bimolecular reaction in solution 

Rate = Ks CA CB → (4) 
Equation (3) = (4) 

K C C = γK ≠ 
γ Aγ B C C 

S     A    B γ ≠ A B 

K   = γK ≠ 
γ Aγ B  → (5) 

S γ ≠ 

 
According to Boltzmann equation 

 



 

γ

γ

K1 
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Substitute in equation (5) 

γ = 
KBT 

h 

K   = 
KBT γ Aγ B   K ≠ → (6) 

 

S h γ ≠ 

For ideal solution γA, γB  ,γ≠ =1 

K = 
KBT 

K ≠ 
g h 

 
hence 

 

KS = Kg 
γ Aγ B 

γ ≠ → (7) 

 
For unimolecular reaction, 

 
KS = K 

γ A 
 

 

g γ ≠ 

have the solvation of reactant and activated complex are almost 
same both are having almost similar structure, then 

Ks = Kg 

Example: chemisorption of N2O5, O3. 
 

12.5 BRONSTED - BJERRUM EQUATION 

Bronsted Bjerrum explain the relationship between ionic 
strength and rate of a chemical reaction in solution. And this effect 
is involved in non catalytic reaction. 

For a general reaction, 
 

AZA + BZB ↔ AB(ZA+ZB)≠    

↓↓K3 →Pr oduct 
K 2 

≠ C ≠ γ ≠ 

k   =  AB AB  

CACB  γ Aγ B 

-------- (1) 

C ≠ = K ≠ 
γ Aγ B .C .C 

 

 
------- (2) 

AB ≠ A B 
AB 

dp = k C ≠ = k k ≠C C γ Aγ B  ----- (3), k3 k≠ =k0 

dt 3 AB 3 A    B ≠ 
AB 

Self-Instructional Material 

188 



 

γ 

γ γ

0 A B AB 

i

A

B

A B 

A B

A B B 

 γ Aγ B  
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γ = k0  

 
 γ Aγ B  

 
 

≠ 
CACB 

AB  
------- (4) Reactions in solution 

 
NOTE 

 ≠ 

 AB 

 = kinetic activity factor 
 

For a reaction, A + B → P 

γ = Kr  CA  CB  -------- (5), Equating (4) & (5) 
 

k C C = K  
γ Aγ B .C  .C , 

 

k   = k  
γ Aγ B ------------ (6) 

 

r A B 0 ≠ A B 
AB 

r 0 ≠ 
AB 

Taking log on both sides, 
 

≠ 

log kr   = log k + log γ + log γ − log γ (6 A) 

According to Debye Huckel theory of strong electrolyte the activity 
coefficient 

related with ionic strength as log γ = −AZ 2i 

A- constant = 0.51dm-3/2 mol ½ for aqueous solution at 250c 

Zi = charge of ‘i ’th ion 

µ = 
1 

∑C Z 2 Ci = concentration, Zi = valencies of species 
 

Thus 

2 i 

log γ A 

log γ B 

i 
 
 

= −AZ 2 

= −AZ 2 

 

------- (7) 
 

------- (8) 
 

log γ ≠ 
AB = −A(Z + Z )2 -------- (9) 

 

Substitute equations (7), (8) and (9) in equation 6(A) 

log 
kr

 

k0 

 
= − AZ 2 

 
− AZ 2 

 
+ A(ZA 

 
+ ZB ) 

= −A µ [Z 2 + Z 2 − (Z + Z  )2 ] 
= −A µ [Z 2 + Z 2 − Z 2 − Z 2 − 2Z Z ] 

A B A B A    B 

log 
kr

 

k0 

 
= + A.2Z 

 
AZB 

For an aqueous solution at 25◦C this equation becomes 
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when ionic strength is zero, k
Bronsted Bjerrum

equation. This equation shows that variation of ‘k’ with 

depends on ZAZ

The plot of log k

Case (i) 

When ZAZB

electrolyte) 

Log  kr   = 

log  
kr . 

k0 

 

 
 

Eg: [Cr(urea)  ]
0 

CH ICOOH 
 
 

Case (ii) 

When ZAZB = +ve, Z

with increasing 

Self-Instructional Material , S O2−

2    8 
 

µ 

 2 2 3 

2 

log 
kr

 

k0 

= 1.02Z AZB 

when ionic strength is zero, kr = k0 .This equation is known as 
Bjerrum 

equation. This equation shows that variation of ‘k’ with 

ZB . 

The plot of log kr/k0 vs will be linear. 

B=0 i.e. one of the reactant is zero charge (i.e. non 

 log k0, hence increase of has no effect on

 

]3+  + 6H O → [Cr(H O)  ]3+  + 3urea ,   ZA  = 3, 

CH ICOOH + CNS− → CH (CNS)CNH + I − 

= +ve, ZAZB both has same size. 

 

 
log 

kr increases
k0 

− + 2I − → I + 2SO2−, Z , Z = 2 
 2 4 A B 
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µ 

µ 

µ 

.This equation is known as 

=0 i.e. one of the reactant is zero charge (i.e. non 

has no effect on 

3,  ZB  = 

increases 

µ 



 

3 3 

2[Co(NH ) Br ]+ Hg 2+ + 2H O → 2[Co(NH ) H O]+ HgBr  Unit -12 
3 5 

ZA , ZB = 4 

Case (iii) 

2 3  5 2 2 

Reactions in solution 
 

NOTE 

When ZAZB = -ve log 
kr decreases with increasing 
k0 

(i) H O  + 2Br − + 2H + → 2H O + Br Z , Z = (−1)(1) = −1 
2    2 2 2 A B 

[Co(NH  )Br ]2+  + OH − → [Co(NH  )OH ]+ Br − 

12.6 Check Your Progress 
1. What is mean by rate of the reaction? 
2. How does the rate of reaction depend on volume? 
3.Explain Enzyme catalysts? 

12.7 Answers to Check Your Progress Questions 

ZA , ZB = −2 

 

1. The rate of a reaction is the speed at which a chemical reaction happens. 
If a reaction has a low rate, that means the molecules combine at a slower 
speed than a reaction with a high rate. Some reactions take hundreds, maybe 
even thousands, of years while others can happen in less than one second. 

 
2. The rate of reaction r for the reaction A→B is given by : r=k[A],where k is 
the rate constant and [A] is the concentration of the reactant.(I've assumed 
the reaction to follow first order kinetics.)So r is directly proportional to the 
concentration of the reactant. rate increases on increasing reactant 
concentration. However, the concentration of A is actually in moles/Liter, 
which is moles per unit volume. Hence, r is inversely proportional to the 
volume and the rate decreases on increasing volume of the reaction vessel. 

 
3. Enzyme catalysis is the increase in the rate of a process by a biological 
molecule, an "enzyme”. Most enzymes are proteins, and most such 
processes are chemical reactions. Withinthe enzyme, 
generally catalysis occurs at a localized site, called the active site. 

 

12.8 Summary 
 

� Chemical kinetics is the study of chemical reactions with respect to 
reaction rates, effect of various variables, rearrangement of atoms 
and formation of intermediates. 

� The rate of a reaction is concerned with decrease in concentration of 
reactants or increase in the concentration of products per unit time. It 
can be expressed Application of ARRT to solution kinetics, 

� Mathematical representation of Bronsted Bjerrum equation.It has to 
be determined experimentally and cannot be predicted. 
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NOTE 

Cage Effect: The cage effect in chemistry describes how the 
properties of a molecule are affected by its surroundings. First 
introduced by Franck and Rabinowitch in 1934, the cage 
effect suggests that instead of acting as an individual particle, 

molecules in solvent are more accurately described as an 
encapsulated particle. 

 
Solvation effect: If the polarity of the product is different from 

that of the starting material, solvation changes the thermodynamic 
properties of the reaction. If the transition state experiences the 
change in polarity (usually charge buildup), solvation changes 
the kinetics properties of the reaction 

 

12.10 Self-assessment questions and exercises 
 

1. Explain in detail about the rate constants. 
2. Discuss in detail about reaction rates in solution 
3. Distinguish the Bronsted and Bjerrum equation 

 

12.11 Further readings 
 

1. C.M. Guldberg and P. Waage,"Studies Concerning 
Affinity" Forhandlinger i Videnskabs-Selskabet i 
Christiania (1864), 35 
2. P. Waage, "Experiments for Determining the Affinity 

Law" ,Forhandlinger i Videnskabs-Selskabet i Christiania, (1864) 
92. 
3. C.M. Guldberg, "Concerning the Laws of Chemical 

Affinity", Forhandlinger i Videnskabs-Selskabet i 
Christiania (1864) 111 
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13.0 Introduction 
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NOTE 

 

 

In our last two modules, we took up solution kinetics in detail. You 
now know that solution kinetics is the kinetic study of chemical 
reactions taking place in solution phase and the nature of solvent has a 
predominant influence on the kinetics of such reactions. 

In general, the solution phase reactions can be 
classified as Ionic reactions and Non Ionic reactions. And here, we are 
concerned with the kinetic study of ionic reactions. 

� + � → � …(1) 
���� = 	[�][�] …(2) 

where k is the rate constant for the reaction. 
 

We found that only Classical Thermodynamic 
approach of transition state theory can be utilized to determine the rate 
constant of ionic reactions or solution phase reactions and studied the 
effect of solvent on rate constant. In this module, focus will be laid on 
primary salt effect and secondary salt effect. 

13.1 Objectives 
After going through this unit, you will be able to: 

• Understand the concept behind the salt effect in the solution. 
• Understand the mechanisms behind effect of pressure and 

volume of activation in solution. 
• Learn about the Effect of substituents on reaction rates 
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NOTE 

 
 

13.2 PRIMARY SALT EFFECT 
 

By doing a neutral salt to the reaction mixture having 
either type of ions, the rate of the reaction is considerably 
affected according to the Bronsted Bjerrum equation is said to 
be primary salt effect or neutral salt effect. 

It is experimentally found that the rates of second-order 
reactions between charged species are affected strongly by the 
ionic strength of the solution, this quantity being defined as 

I = 1/2∑Cj Zj
2
 

where Cj is the concentration of each ion present in the solution 
and Zj is the charge number of the ion. When the reacting ions 
are of same sign, increase in ionic strength increases the rate 
whereas when the reacting ions are of opposite signs, increase in 
ionic strength decreases the rate. 

 
 

13.3 SECONDARY SALT EFFECT 
 

 

This arises if one of the reactants is a weak electrolyte that can 
be stimulated by catalytic reaction. The rate of the reaction 
depends upon the amount of salt added in a catalytic reaction. 
Actual change in concentration of reacting ion by adding the  
salt externally. 

This effect is not having a direct influence. But it will influence 
the concentration of reactant. The equilibrium constant for the 
dissociation of weak acid HA can be written as 

 
ka = 

[H + ][A− ]γ + γ − 

[ ] 
 

Addition of salt will influence the activity co-efficient they also 
influence the concentrations of H+, A- and HA and this way the 
catalytic activity has been lowered/increased, will influence rate 
is said to be secondary salt effect. 

13.4 INFLUENCE OF INTERNAL PRESSURE 
 

We know the rate constant in solution has the relationship with 
gas phase rate equation. 

K  = 
KBT 

K ≠ 
γ Aγ B   → (1) 
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A B 

K = 
KBT 

K ≠ → (2) 
o h 

 
Ko = rate constant under ideal conditions. 

For an ideal solution γ ≠ γ ≠ γ ≠ ≠ 1 
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NOTE 

activity co-efficient according to langmuir is given by 

RT ln γ = V (P1/ 2  − P1/ 2 )2 

1 1    1 2 

 
 

V1 – Molar volume 

P1 – Pressure of solvent 

P2 – Pressure of solute 

γ1 = V1 ∆ 
 
 
 
 

RT ln γ1 = V1 ∆ 

 
 
 

→ (3) 
RT ln γA = VA ∆A; RT ln γB = VB ∆B ; RT ln γ≠ = V≠ ∆≠ 

 
RT ln γA + RT ln γB - RT ln γ≠ = VA ∆A + VB ∆B - V≠ ∆≠ 

RT ln 
 γ Aγ B  = VA ∆A + VB ∆B - V≠ ∆≠ 

  
  γ ≠ 

RT ln 
Ks

 

Ko 

 
 

 
= VA ∆A + VB ∆B - V≠ ∆≠ 

The molar volume of reactant and activated complex are equal. 

Case (i) 

If ∆A = ∆B ≈ ∆≠ 
Then the solvent will not affect the rate of reaction in solution. 

Case (ii) 

Psolvent ≈ Preactant and ∆≠ is large 

Then the reaction rate in solution would be low than ideal solution rate. 

Case (iii) 

When Psolvent ≈ Pactivated complex , has much different from that of reactant 
than the RT Ln Ks/Ko will be positive value and make the reaction rate in 
solution high, that is RT Ln Ks is large. 

Thus the kinetic study of solution is very complicated but in general, 
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(i) If the product of the reaction is polar, then the reaction is favoured in 
polar solvent. 
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NOTE 

(ii)  If the product of the reaction is nonpolar, then the reaction 
is favoured in non-polar solvent. 

(iii)  If the product of the reaction having high internal pressure 
then the reaction is favoured in solvent having high internal 
pressure. 

 
 

13.5 EFFECT OF SOLVENT 
 

 

It can be classified in the following topics 
 

13.5.1 REACTION BETWEEN IONS 
 

The electrostatic forces between ions are much stronger than 
non electrostatic, forces. The pre exponential factors of ionic 
reactions depend in simple electrostatic principle. If ions are 
oppositely charged the pre exponential factors are abnormally 
high, where as if the charges are the same they are abnormally 
low. 

The reaction between ions in solution has markedly affected 
by solvent and its dielectric constant. In order to explain this 
effect there are two models into account. 

(i) Single sphere model 

(ii)  Double sphere model 

Single sphere model 

Here slightly different relationship has been obtained from that 
of double sphere model. 

a) The reacting ions are regarded as becoming merged into one 
single sphere which has charge equal to the algebric sum of the 
both the ions. 

b) The rate equation for this model is derived by Born. 

c) Consider the process of charging a conducting sphere of 
radius “r” from an initial charge if zero to a final charge Ze. 

(d) This process is carried out by transporting from infinite 
distance to small increment of charge equal to edλ. 
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o

o o

o

 

 
 
 
 
 
 
 
 
 

λ = Parameter which varies from zero to ‘z’. 

At any time the charge of the sphere has written as λe, and if at a given 
instant the increment of charge is at a distance x from the ion the force acting 
on it is 

Unit – 13 
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NOTE 

f =  eλ  
4πε εx2 

df = λe.edλ 
4πε εx2 

=  
λe2dλ 

4πε εx2 
→ (1) 

 
 

The work of moving the increment from x to dx is 

λe2dλdx 
dw =   

4πε εx2 
 
 

The total work of charging is obtained by carried out by double integration 
 
 

− e2 
z γ 

 
 

λ0→ Z , 
dx 

 
 

xα →r 
 
 

e2 Z 

 

 
 1  γ 

∫ dw = 
4πε ε ∫0 ∫α 

λdλ 
x2 , = − 

4πε ε ∫λdλ 
− 

x 
 

o 

 

− 
e2 − 

1 λ2  Z 
 

  

o     0 α 
 

e2 Z 2 
 =  4πε ε r 

 2  , w = 8πε εr ------- (3) 
o   0 

Z 2e2 

o 

 
0≠ (Z + Z 

 
)2 e2 

G0
es ( B)  =  B 

 
8πε εr 

G  es  =  A B  
4πε εr≠ 

o     B o 
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
 ( ) 

  ( ) 

es

nes

 B  



The charge in electrostatic ∆ G 0es is 

 Unit – 13 ∆G0
≠

 

 
es = e2  (Z 

 

+ ZB ) ≠ − 
Z 2 A Z 2B  − → 4 

 

 
Salt effect 

8πεoε  γ γ A γ B  

Free energy per molecule is 

NOTE  
∆G0≠ 

es = Ne
2 

 (ZA + ZB ) ≠ − 
Z 2 A Z 2B  − → 5 

 

8πεoε  γ γ A γ B  

∆G≠ 
es  = ∆G≠ 

es  + ∆G≠ 
nes . 

G0≠ = Electrostatic contribution to the Gibbs energy of 
activation 

G0≠ = Non-Electrostatic contribution to the Gibbs energy of 
activation 

Substitute equation (5) in ARRT equation 

K  = 
KT 

e−∆Go≠ / RT r
 h 

 
Ne 2  (Z A + ZB )2 Z 2 A 

 
 

Z 2 B  
 

     − −  ∆Gnes  

K   = 
RT  

e
8πε oεRT  γ ≠ γ A γ B 

.e
− → (6)     

r Nh 
 RT 

 

Taking natural logarithms we obtain 

 
ln kr = ln RT 

.e
 

 

− ∆G ≠ nes 
RT − e2  (Z 

 

+ ZB ) ≠ − 
Z 2 A − 

Z 2 
 

 → (7) 
2h 8πεoεRT  γ γ A γ B  

 
This may be written as 

e2  Z 

 
2 + Z 

 
2 + 2Z Z 

 

Z 2 Z 2  
ln kr = ln k0 − A B A ≠ 

 

B − A − B  → (8) 
8πεoεRT  γ 

, 

γ A γ B  

when γ ≠ = γ = γ B 
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The equation becomes double sphere model 

Double sphere model 

According to ARRT, general reaction is as follows 

Ions ↔ A.C →product 
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A
2



 

o

o

k  = k ≠ 
RT 

, 
r Nh 

 
∆G≠ = −RT ln k ≠ , 

 
k ≠ = e 

− 
∆G ≠ 
RT 
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Thus kr = RT 

e 
Nh 

− 
∆G ≠ 
RT 

 
-------- (1) 

 

NOTE 

It is a thermodynamic statement of ARRT 

The charged ions in solution are considered to be 
conducting sphere and solvent regarded as fixed dielectric 
constant and hence the spheres are hard and rigid 

 

γA and γB = Radius of two ions, ZAe and ZBe = the charges on the  
ions 

e = 1.602x10-19 C. 

Initially the ions are infinite distance apart. In this particular model 
known as double sphere model (hence no force between them) 

When the ions are separated by a distance ‘x’ the force acting 
between them is 

according to coulombs law 

Z   Z e 2 
f  =    A     B  

4πε εx 2 
------- (2) 

 

Work done in moving two ions together to a distance dx is given 
by 

Z Z e2 
dw = −    A  B dx , ‘-ve’ sign implies the decrease of ‘x’. 

4πε εx2 

The work done on the system in moving the ions from x = α to x = dAB 

dAB Z Z e2 Z Z e2 dAB 1 
∫ dw = − ∫ A B

 
 

dx , w = −  A    B ∫ 2 dx 
 

α    x 4πεoε 4πεoε α x 
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= A B 

Z Z e2  1  d AB Z Z e2 
w = −   A  B −   w =  A    B  ------- 
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(3) 

4πεoε   x α 4πεoεdAB 

 

NOTE This work is +ve when the ions are same sign. This is – 
ve if opposite charge. Hence the work is electrostatic 
contribution to the Gibbs free energy of activation. 

 
 

∆G≠ Z Z e2 ∆G ≠ 
=  A  B (electrostatic) +  nes  (nonelectrostatic) 

 

N 4πεoεd AB N 
 

 
∆G≠ 

 
NZ Z e2 
4πε εd 

 
+ ∆Gnes 

 
--------- (4) 

o AB 

Substitute in equation (1) 
 
 
 

kr = RT 
e 

Nh 

− 
∆G ≠ 

RT , 
 

kr = RT 
e

− 

Nh 

Z AZBe 2 N 
 

RT .d AB 4πε oε .e 
− ∆Gnes 

RT 

 RT  − 
∆Gnes − Z AZBe 2 N  

 
 

ln kr 
= ln   .e 

 Nh 
 

RT .e RT .d AB 4πε oε  
 
 

RT − 
∆G ≠ 

nes 
 

Z Z e2N 
ln kr = ln 

Nh 
e RT −  A    B  

4πεoεdAB RT 
-------- (5) 

 

k Z  Z e2N 
ln    r   = −  A    B  

k0 4πεoεd AB RT 

K0 = rate constant of reaction in solvent of infinite dielectric 
constant. Plot of kr vs 1/ε will give straight line. It is 
experimentally verified but there is a deviation in low dielectric 
constant. From the slope the dAB can be calculated, it has  the 
the value of few hundred picometer (10-12). 
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13.5.2 ION-DIPOLE REACTION 

Ion-dipole 

In reality, many ions have a distribution of charges, and this makes a 
difference to the electrostatic interactions. Much interest is between ion and 
dipole molecules or between two dipole molecules. 

The electrostatic free energy contribution is from single sphere model 

Sphere of radius – r 

Net charge - Ze 

Dipole moment –µ 

Unit – 13 
Salt effect 

 

NOTE 

∆ o = z2e2 

+
 

 
 

3µ 2 → ( ) 
Ges 

8πεoεr 16πε εr3 1
 

For a bimolecular reaction 

A + B → X ≠ → product 

z 2e2 
  

3µ 2 ( )  

 
∆Ges ( A) = 

8πε εr
 

+ 
16πε εr 3 

→ 2
 

o A 

 
z 2e2 

  

o A 
 

3µ 2 
 

 

 → ( ) 
∆Ges (B) = 

8πε εr
 

+ 
16πε εr 3 3

 
o    B o    B 

∆ o ≠ (z + z )2 e2 
= A B + 

 
 

3µ≠ → ( ) 
Ges ( ) 8πε εr 16πε εr 3 4

 
o     ≠ o     ≠ 

So the electrostatic contribution for activation 
≠ e2  (z + z )2 z 2 z 2  3  µ 2 µ 2 µ 2  

∆Go =     A B − A − B  + 
 

 

 ≠ 
 

 

− A − B  → (5) es 8πε ε  r r r  16πε ε  r3 r3 r3  
o      ≠ A B  o   ≠ A B  
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1.602 ×10 Cm 
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The non electrostatic contribution say ∆G≠ nes 

∆G≠ = ∆G≠
es + ∆G≠

nes 

From ARRT 

e2  (z + z )2 z 2 z 2  3  µ 2 µ 2 µ 2  
Ink = Inko −     A B − A − B  + 

 
 

 ≠ − A − B  → (6) 
 

 NOTE 8πε KTε  r r r  16πε KTε  r3 r3 r3  
o  ≠ A B  o   ≠ A B  

 
Assume radii do not vary as much as the charge and dipole 
moments, it is a useful approximation to treat them all the 
same and equal to dAB. 

γ A = γ B  = γ ≠  = dAB 

Then equation (6) becomes 

= − 
z
 z e2 − 

µ 2 − µ 2 − µ 2 → ( ) 
Ink InKo 

A B
 ≠ A B 7 

 

4πε εd KT 16πε εd 3 KT 
o AB o AB 

If both the species are charged the second term in equation (6) 
or equation (7) is usually much greater than the third. 

If either reactant has no charge, however, the final term 
becomes predominant. 

If the reacting species are uncharged, converted into activated 
complex has more polar than reactant (γ≠ is large compared to 
γA and γB, the rate constant increases with increasing dielectric 
constant. 

 ∆µ 2 ≡ µ 2 − µ 2 − µ 2 
   

→ ( ) 
o ( − 29 )2  8 

 
1.602×10-29 Cm is the dipole moment of two elementary 
charges (1.602×10-19C) separated by a distance 10-10m. 

13.6 EFFECT OF SUBSTITUENTS ON 
REACTION RATES 

 

How the rate of the reaction or equilibrium constant will 
affect by substitution in either m or p was explained by 
Hammet. It is a linear relationship between Gibbs free energy 
of any two set of reactions. 
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13.6.1 HAMMETT’S EQUATION 

According to Hammetts relationship the rate constant for the reaction 
of one compound is related to that for the unsubstituted parent compound in 
terms of two parameters ρ and σ 

For rate constants the relationship is 
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NOTE 

log 
k 

k0 

 
= ρσ 

σ - Substituent constant is a number (+ve of –ve) 

+ve = for electron withdrawing substituent. 

-ve = for electron releasing substituent. 

ρ - reaction constant is n number due to external condition, solvent etc. 

ρ is +ve if solvent will assist the electron withdrawing nature or releasing 
nature. 

ρ is –ve if solvent will against the electron withdrawing or releasing nature. 

C6H5COOH ↔ C6H5COO- + H+ ρ =1 (constant) 

NO2 -C6H5 COOH ↔ NO2 -C6H5 COO- + H+ σm = 0.710 

log 
k 

k0 

= ρσ m = 0.710 ×1 

 

log 
k 

k0 

= 0.710 

log k = log k0  + 0.710 

k = log −1 0.710 
k0 

k = 5.31 
k0 

k = k0 5.31 

ie. Rate of ionization of substituted benzoic acid is 5.31 times greater than 
unsubstituted benzoic acid. 

Using the same value of ρ and σ for hydrolysis of benzamide in 60% 
ethanol at 80°. We can calculate the m-nitrobenzamide which can be 
hydrolysed 0.615 times as fast as benzamide. 
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∆G

∆G

0

T

Linear free energy relation of Hammet equation: 
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NOTE 

log k = log k0 + ρσ s 

When we plot log k vs σs is a linear relation, from that we can 
calculate the value of ρ. 

 

 

 
 
 

The rate constant of a reaction related with free energy of 
activation by. 

k = KBT 
e 

h 

∆G ≠ 
−     0  

RT 

 
------- (1) 

 
keq = e 

 
∆G ≠ 

−      0  

RT 

 
-------- (2) 

 

Taking log for equation (1) 

k T ∆G≠ 
log k = log   B   −  0  

h 2.303RT 

Hammett equation 
 
 

Substitute (3) in (4) 

log k = log k0 + ρσ (4) 

T 
log kB h

 − 
∆G≠ 

2.303RT 
= log kB h

 

 
≠ 

−  o + ρσ 
2.303RT 

∆G≠ 
2.303RT 

 
≠ 

=  o − ρσ × 2.303RT 
2.303RT 
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∆G≠ = ∆G ≠ − 2.303RTρσ (5) 

∆G≠ = free energy of activation for substituted compound 
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0

∆G 

∆G≠o = free energy of activation for parent compound 

Equation (5) with a particular value of ρ, applies to any reaction involving a 
reactant having series of substituents. 

For another series has different ρ value and by assuming σ is constant. 

∆G≠ '    

= ∆G ≠ '    

− 2.303RTρ 'σ 
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NOTE 

 

∆G
≠ 
ρ ' 

≠ 

=  0 − 2.303RTσ 
ρ ' 

 
------- (6) 

Equation (5) may be written as 
 
 

 
Subracting (7) – (6) 

∆G
≠ 

ρ 

∆G ≠ 
= 

ρ
0 − 2.303RTσ 

 
∆G≠ ∆G≠ 
  0   =  0  

 
------ (7) 

ρ ρ ' 

∆G≠ −  
ρ ∆G≠ '       

= cons tan t . 
0 ρ ' 

0 

 

Then there is a linear relationship between Gibbs energy of activation with in 
any two set of homogeneous reaction. 

13.6.2 TAFT EQUATION 
 

When Hammet plot of log K/Ko against σ are extended to the reactions of 
aliphatic compounds and to those of o-substituted benzene derivatives the 
straight line no longer result. Thus Taft derived another equation, including 
polar factor, conjugation factor and steric effect hence used for aliphatic 
compound also. 

log K/Ko  = P + C + S 

P – polar factor 

C – Conjugation factor 

S – Steric effect. 

He studied acid hydrolysis of ester as well as base hydrolysis of ester, single 
equation is not hold good for both the case. The polar effect has neglected in 
acid hydrolysis, 
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NOTE 

log (K/Ko)base = P + C + S 

log (K/Ko)acid = C + S 

log (K/Ko)base = P + log (K/Ko)acid 

 

This equation is known as Taft Equation. 
 

13.7 Check Your Progress 
 

 

1. What is the difference between the primary and secondary salt ? 
2. What is the effect of ionic strength on the rate of reaction? 

 

13.8 Answers to check your progress questions 
 

1. Primary salt effect. It has been observed that the rate of a reaction 
can be altered by the presence of non-reacting or inert ionic species 
in the solution. This effect is profound when the reaction takes  
place between ions, even at low concentrations. 
The term “secondary kinetic salt effect'' is used to indicate a  
kinetic. salt effect due to a change in concentration of the reacting 
molecules on. account of a change in the inter-ionic  forces.1,2. 
Such effects are very commonly met in the study of kinetic 
reactions. 

 
2. This question might be simple for those who might have 
understood the concept of CHEMICAL KINETICS in which there’s 
a beautiful equation given to us with which we can find out rate of 
reaction in addition to this entropy also changesi.e with increase in 
IONIC strength of a compound the chemical reaction 
rate decreases.some factors affecting the reaction rates might also 
be included such a s temperature,pressure and concentration mainly 

 

13.9 Summary 
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� In this module, focus was laid on primary salt effect and 
secondary salt effect. 
� It has been observed that the rate of a reaction can be 
altered by the presence of non-reacting or inert ionic species in the 
solution. This effect is profound when the reaction takes place 
between ions, even at low concentrations. This influence of charged 
species on the rate of the reaction is referred to as salt effect. 
� The salt effect is classified as Primary salt effect and 
Secondary salt effect. 
� The primary salt effect takes into account the influence of 
electrolyte concentration on the activity coefficient and hence the 
rate of the reaction. 
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� The secondary salt effect is the actual change in the 
concentration of the reacting ions resulting from the addition of 

  electrolytes  

13.10 Keywords 
Primary salt effect- It has been observed that the rate of a reaction can be 
altered by the presence of non-reacting or inert ionic species in the 
solution. This effect is profound when the reaction takes place between 
ions, even at low concentrations. 
The secondary salt effect- It is the actual change in the concentration of 
the reacting ions. resulting from the addition of electrolytes. 

13.11 Self-assessment questions and exercises 
1. Explain in detail about effect of solvent with example. 
2. Explain the dielectric constant. 
3. What is meant by Hammett and Taft equations? 

13.12 Further readings 
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1. Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. 
(2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: 
Prentice Hall, p. 28, ISBN 0-582-22628-7 
2. Physical chemistry, Peter Atkins, Julio De Paula, 9th edition, 
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Unit-14: ACID BASE CATALYSIS  
Structure 

 
14.0 Introduction 
14.1 Objectives 
14.2 Acid base catalysis- 
14.3 Acidity functions 
14.4 Bronsted relations 
1.4.5 Zucker Hammett hypothesis 
1.4.6 Enzyme catalysis 
1.4.7 Effect of pH 
14.8 Influence the Temperature on enzyme catalyzed reactions 
14.9 Check your progress questions 
14.10 Answers to check your progress questions 
14.11 Summary 
14.12 Keywords 
14.13 Self-assessment questions and exercises 
14.14 Further readings 

 

14.0 Introduction 
 

The    acid     catalysis and base     catalysis,     a chemical   
reaction is catalyzed by an acid or a base. By Brønsted–Lowry 
acid–base theory, the acid is the proton (hydrogen ion, H+) donor 
and the base is the proton acceptor. Typical reactions catalyzed by 
proton transfer are esterification’s and aldol reactions. In these 
reactions,   the conjugate   acid of   the carbonyl group   is    a   
better electrophile than the neutral carbonyl group itself. Depending 
on the chemical species that act as the acid or base, catalytic 
mechanisms can be classified as either specific catalysis and general 
catalysis. Many enzymes operate by specific catalysis. 

 

14.1 Objectives 
 

After going through this unit, you will be able to: 
• Understand about the Acid and base catalysts. 
• Understand the methods of determining the Enzyme 
catalysis 
• Explain the concept of effect of pH and temperature on 
enzyme catalyzed reactions 

 

14.2 ACID BASE 
 

A reaction is catalysed by H+ or H3O+ ion is said to be 
specific acid catalysis reaction. Some reaction is catalysed by 
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o H OH 

o H OH 

H + 

H

H + 

r 

any Bronsted acid is said to be general acid catalysis reaction. 
If a reaction is catalysed by OH- ion is specific, base catalysis 
or by any base are said to be general base catalysis reaction 
Some reaction catalysed by both acid and base are said to be 
acid-base catalysis. 

If a reaction is carried in aqueous acid the rate 
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NOTE 

r = Ko [S ]+ KH [S ][H ]→ (1) 
+ 

 
 

If OH- also included 

r = K [S ]+ K [S ][H + ]+ K [S ][OH − ]→ (2) 
Divide through out by [S] 

K = K  + K  [H + ]+ K [OH − ]→ (3) 
Note:  

r = K [S ] 
 
 

Skrabal diagram: 

[S ] = K 

The plot of log K vs pH of the solution is known as Skrabal diagram. 

For mutarotation of Glucose 
 

 

CASE I 

For acid catalyzed reaction: 

K = K [H + ] 
LogK = LogK + Log[H + ] 

LogK = LogK   +    − pH 
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CASE II 

 
K = K 

 
 

OH − 
[OH − ] 

 
 

NOTE 

LogK = LogK 
 

OH − 
+ Log[OH − ] 

K 
LogK = LogK − + Log w  

H + 
 

 
 

CASE III 

LogK = LogK
OH − Kw + pH 

The horizontal line with zero slope corresponds to uncatalysed 
reaction. Zero order with respect to acid/base 

14.3 ACIDITY FUNCTIONS 
 

The first acidity function proposed, other than the pH, is due to 
Hammett and Doyrup, is based on equilibrium of the type 

B + H + ↔ BH + 

Eg: C6 H5 NH2 + H + ↔ C H NH + 

Equilibrium constant for such reactions is 
[BH + ] ×  

Y + 

 K = 
[B][H + ]        BH  

YB .YH +
 

------- (1) 

Where the Y’s are the activity co- efficient.  Where B, [BH+] can  
be distinguished 

Spectrophotometrically, it is possible to measure 

also can be measured in dilute solutions. 

Taking log in Equation (1) 

[BH + ] 
 

 

[B] 

 
, and K 

[BH + ] Y + 

log k = log   

[B][H + ] 
 
[BH + ] 

+ log    BH  
YBYH +

 

+ Y + 

log k − log = log[ H ] − log Y + + log BH  

 
 

log k − log 

[B] 
 
[BH + ] 

 
 

 
 
= − log a 

H YB
 

 
− log 

YB 
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[B] [ H ] 

BH + 
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H



a

+

H

Y

log k − log [BH + ] 
 

 
= − log a    YB  

+ 

[B] 
 

Y .[H + ] = a 

[ H ] 
BH + 
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Left hand side of equation can be measured by experimental way. The 
function on the right hand side can be measured in acidic solution by 
introducing a suitable indicator and measuring the concentrations of the two 
species. The quantity on the right-hand side. 

 
NOTE 

 
HO = − log10 

 a + 

 

 
B       

BH +   

 
Hammett acidity function 

S + H + ↔ SH + (rapid ) →[SH + ]≠ 

SH + → product(slow) 

If the second step is slow and rate controlling step, the overall rate is 
proportional to the ion concentration of activated complex [(SH+)]≠ 

γ = k ≠[SH + ]≠ 
 

≠ [SH + ]≠ Y ≠ 

Ks = 
[SH + ] Y 

a≠ 

-------- (1) 

 
K ≠[SH + ]Y 

K ≠ = SH + :  

[SH + ]≠ =    S SH + 

 -------- (2) 
s ≠ 

SH + 

a≠ and Y≠ are activity coefficient. 

a + [SH + ]  Y  + 

For the pre equilibrium, ks  =    SH       =  SH  ------- (3) 
asaH

 

From equation (2) γ = k ≠[SH + ]≠ 

k ≠k ≠[SH + ]Y 

[S ] YS aH +
 

rate =  s SH + 

 

Y ≠  
 

[SH + ] Y + 

From equation (3) 
ks  =  SH  

 

14.4 BRONSTED RELATIONS 

[S ] YS aH +
 

Since catalysis by acids and bases usually involves the transfer 
of proton from or to the catalyst, it is natural to seek a 
correlation between the effectiveness of catalyst and its 
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H + 

Y 
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SH +
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a  
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NOTE 

strength as an acid or base. The most satisfactory relationship 
was given by Bronsted termed as Bronsted relations, 

 
 

(i) The catalytic constant is related with dissociation constant Ka 

by, 
 

k   = G K α 
a a     a 

Where, Ga    and   α are  constan, ka catalytic constant, Ka 

Dissociation constant, α always less than unity. 

(ii)  Similarly, for a base catalysis 
 

k   = G K β 
b b     b 

 
 

 1 
β

 
 

 

K = 
1
 

 
 

G' =   b K 
b 

 K a 
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where kb is the dissociation constant for the base; ka that for its 
conjugate acid; β is a constant that is again less than unity. 

Modification of above equation: 

If we applied this relation to an acid catalysis reaction of 
dibasic nature i.e. acid has more than one ionizable proton or base 
more than one centre to accept proton, the modification should be 
made. 

CH3(CH2)COOH – Long chain fatty acids 

HOOC-CH2(CH2)nCOOH – Dibasic acid 

(i)  In the dibasic acid there is negligible interaction between the  
two carboxyl groups. The dissociation constant of the dicarboxylic 
acid is twice that of the monocarboxylic acid. Since the ion can be 
formed by loss of either of two proton. For the same reason the 
catalytic activity or catalytic constant for dibasic acid is twice that 
of monobasic acid. 

Since the ratio of 2 in the acid strengths leads to the ratio of 2α in 
the catalytic constant and this is generally less than 2. This anomaly 
is avoided if both the acid strengths and catalytic constant are 
divided by the number of proton involved in the dissociation. 
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o

(ii) In the case of the two acids HOOC(CH2)nCOOH and 
HOOC(CH2)nCOO- , both of which have one dissociable proton, the 
catalytic strength are the same. On the other hand, the acid strength of 
second is one half of first since the ion -OOC(CH2)nCOO- in which the 
second dissociates has two points at which a proton may be added, where 
as the ion of the first acid has only one site. To remove the inconvenience it 
is necessary to multiply the dissociation constant of HOOC(CH2)COO- by 2 
before inserting it into the equation 
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NOTE 

 

k  qK  α 
    a   = Ga 

  a  
P    P   

 
 

k    P  
β

 
    a   = G'   

 

q b  qK 
a  

ρ – number of dissociable proton bound equally strongly in the acid, while 
q is the number of equivalent positions in the conjugate base to which a 
proton may be attached. 

The Bronsted relationships are special cases of the linear Gibbs energy 
relationship. 

log k = log Ko + δρ 

log k = log K   + δρ' 

δ is same in both the cases but the reaction constant ρ and 

in equilibrium and rate constant equations. 

 
 

 
ρ ' are different 

1 
log k = 

ρ 
1 

log k + δ 
ρ o 

 

 
and 

1 
log k = 

ρ ' 

1 
log k + δ 

ρ ' o 

 
Subtraction leads to 

1 
log k - 

ρ 
1 

log k = constant 

ρ '  

 

And therefore 

 

log 

1 
 

k ρ 

 1  

K ρ ' 

 
= cons tan t 
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K

2

ρ

γ

This may written as  log   
k = cons tan t 
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NOTE 

 
 

K ρ ' 

or  k = GKo 
 

14.5 ZUCKER- HAMMETT HYPOTHESIS 
 

 

The acidity function is used to check the existence of 
correlation between Ho and rate constant, a pre-equilibrium of the 
type as give below can be established. 

 

X + H + ↔ XH + ( fast) XH+ → P (slow) 
 

The second step is slow and rate determining step. 

The activated complex has equilibrium with further activated 
complex. 

 
K 1 

XH + ↔[ XH + ]≠ ↓↓K2 → P 
 

rate = k [XH + ]≠ 

[ XH + ]γ ≠ 

------- (1) 

a≠ 

Keq = 
[ XH + ]γ 

 

XH + 

= 
a

XH + 

------- (2) 

K 1[ XH + ]γ 
From (2) 

 
 

(3) in (1) 

[ XH + ]≠ =    eq XH +
 

γ ≠ 

k k1 [ XH + ]γ 
rate =  2   eq XH + 

 

γ ≠ 

[ XH + ]γ 

-------- (3) 
 
 
-------- (4) 

From the pre equilibrium keq = 
[ X ][H + ]γ 

XH + 

+ γ X 
 

[ XH + ] = 
γ X [ X ]a

H + Keq 
 
------- (5) 

XH +  
k k ' k  γ  [ X ]a γ 

Substitute (5) in (4) γ  =   2    eq  eq    X H + XH +  γ ≠γ 
 

k k ' k γ a 

XH + 
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γ = 2 eq eq X H + 

[ X ] 

γ ≠ 

For a first order rate, k= r /[s] 
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k k ' k γ a 
k = 2 eq eq X H +  

γ ≠ 

[S] = [X] 

Taking natural logarithm for the above 
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log k = log k k ' k + log 
γ X aH +

 
 

---------(6) NOTE 
 

2   eq   eq γ ≠ 

 

log k = log k k' k − H --------- (7) 
2   eq   eq 0 

 

H0 is acidity function. The equation shows that a correlation will exist 
between log k and H0, reaction mechanism involving pre-equilibrium.This 
same mechanism tentatively modified by ‘Zucker’ by including water 
(solvent) in the slow process as follows 

 
K K ' 

X + H + ↔ XH + ↔[ XH + ]≠ → product Slow/H2O 
 

follow the derivation equation (6) becomes, 

log k = log k k ' k + log 
γ X aH + aH 2O

 
 

2   eq   eq γ ≠ 
 

The suggestion was that it might be possible to decide between the two 
mechanism by seeing whether the rate constant showed better correlation 
with pH or with H0. Unfortunately this Hammett-Zucker hypothesis did not 
prove reliable. 

14.6 ENZYME CATALYSIS 
 

Enzymes are proteins with high molecular mass of order 10000 or even 
more they are derived from living organism. 

Enzyme catalysed reactions are specific in nature. 

C H  O  ↓↓Zym↓ase→ 2EtOH + 2CO 
6     12    6 2 

 

urea ↓u↓r↓ase→ 2NH + CO2 

Mechanism and kinetics of enzyme catalysed reaction 
 

K1 

E + S ↔ES 
K −1 

 

[ES] ↓↓K2 → P + S 

E= enzyme,   s =substrate 
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Apply steady state approximation for [ES]. 

K1[E][S] − K−1[ES] − K2[ES] = 0 ---------- (1) 

[ES]K−1 + K2 = K1[E][S] 

NOTE 
[ES] = 

K1[E][S ] 

K−1 + K 2 
→ (2) 

[E] = [E0]-[ES] 

[E]=Equilibrium constant 

Substitute in equation, K1[S][(E0)-(ES)]=K-1[ES]-K2[ES] 
 

[ES] = K1[S ][E0 ] 
 

Rate of the reaction r = k [ES] 
K−1 + K2 + K1[S ] 

 

r = 
K2 K1[S][E0 ] 

K1[S] + K−1 + K2 

→ (3) 

 
r = 

 
Divide the equation (3) by k1 

 
K2 [E0 ][S ] 

[S ] + K 

 
r = 

K2 [E0 ][S] 

[S] + Km 

+ 
K2 

K1 

 
--------(5) 

where km = k-1+k2/k1 --- Michaelis constant. This rate equation is 
known as Michaelis –Menton equation. 

At very high concentration of substrate the rate will be 
maximum. 

From equation (5) km<<[S] 

r = 
k2[E0 ][S ] 

, r = 
k2[E0 ][S ] 

  

[S ] + Km 
max [S ] 

 

 
 

Substitute (6) in (5) 

rmax = k2[E0 ] ------- (6) 

r = 
k2[E0 ][S ] 

[S ] + Km 

= 
γ max [S ] 
[S ] + Km 

 
-------(7) 
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Limiting cases: 

Case (i) 
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When km >> [s] 

r = 
γ max [S ] = k '[s] 

Km 

 
Reaction is first order with respect to [s]. 

Case (ii) 
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NOTE 

 
[s]>>km, 

 
Case (iii) 

 
If s = km , 

r = 
γ max [s] = γ 

[s] 
 
 
r = 

γ max [s] = 
1 γ   

 
 
max 

 
= cons tan t 

2[s] 2 max 

 

When we plot a graph Km is defined as concentration of substrate at which 

the rate of formation of product is half the maximum rate at high concentration 

of substrate. 

 
 

 
 

Why the rate of enzyme catalyst reaction changes from first order to 
zero order as the concentration of [s] increases? 

Each enzyme molecule has one or more active sites at which the substrate 
must be adsorbed in order that catalytic action must occur. 

At low [s] 

As the [s] increases the number of sites which are occupied increases and the 
rate also increases. 

At high [s] 
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NOTE 

All the active sites are already occupied and the further increase in
[s] can not further increase in rate and become zero order. It is
very difficult to determine the 

(i) Line Weaver

 
 
 
 
 
 
 
 
 
 
 

 

1 = 
r γ
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14.7 EFFECT OF pH AND TEMPERATURE ON ENZYME 
CATALYZED  

Influence of pH

The pH of the solution usually has a very marked effect on the 
rate of an enzyme reaction. In most cases the rates of enzyme 
reaction passes through a maximum as the pH is varied. The pH 
corresponding to 
value varies with the nature of substrate and with the substrate 
concentration. 

Effects of pH are irreversible if the acidity or basicity become 
too high, since the ternary substance of the protein is destroyed. 
Reversible pH changes occur when the pH is not taken too far from 
the pH optimum.

With in a certain pH range the pH can be c
forth without any permanent affects

This behaviour was first explained by Michaelis to postulate at 
least two ionizing groups as playing an important role at the active 
centre, these groups are 

 

All the active sites are already occupied and the further increase in
[s] can not further increase in rate and become zero order. It is
very difficult to determine the γmax and Km from the plot γ vs [S].

Line Weaver-Burk Method: 

r =  
γ max [S ] 

[S ] + Km 

1 
[S ] + Km 

= 
r γ max [S ] 

 
1 

γ max 

+ km 
γ max [s] 

 
Plot between 1/r vs 1/[s] 

EFFECT OF pH AND TEMPERATURE ON ENZYME 
 REACTIONS 

Influence of pH 

The pH of the solution usually has a very marked effect on the 
rate of an enzyme reaction. In most cases the rates of enzyme 
reaction passes through a maximum as the pH is varied. The pH 
corresponding to the maximum rate is known as optimum pH. Its 
value varies with the nature of substrate and with the substrate 

Effects of pH are irreversible if the acidity or basicity become 
too high, since the ternary substance of the protein is destroyed. 
Reversible pH changes occur when the pH is not taken too far from 
the pH optimum. 

With in a certain pH range the pH can be changed back and 
forth without any permanent affects ensuring. 

This behaviour was first explained by Michaelis to postulate at 
least two ionizing groups as playing an important role at the active 
centre, these groups are –NH3+ and –COOH, the ionization at
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All the active sites are already occupied and the further increase in 
[s] can not further increase in rate and become zero order. It is 

γ vs [S]. 

 

EFFECT OF pH AND TEMPERATURE ON ENZYME 

 

The pH of the solution usually has a very marked effect on the 
rate of an enzyme reaction. In most cases the rates of enzyme 
reaction passes through a maximum as the pH is varied. The pH 

the maximum rate is known as optimum pH. Its 
value varies with the nature of substrate and with the substrate 

Effects of pH are irreversible if the acidity or basicity become 
too high, since the ternary substance of the protein is destroyed. 
Reversible pH changes occur when the pH is not taken too far from 

hanged back and 

This behaviour was first explained by Michaelis to postulate at 
least two ionizing groups as playing an important role at the active 

COOH, the ionization at 



 

active centre may be represented as
 
 

The pH behaviour can be explained by postulating that the intermediate, 
Zwitter ion, form is enzymatically active, but that the species to left and 
right are inactive. The concentration of intermediate goes through a 
maximum as the pH is varied so that the

 

 
Mechanism: 

 

Applying steady state approximation for the above mechanism . 

At low substrate concentration

r 

 
 
 




active centre may be represented as 

 

The pH behaviour can be explained by postulating that the intermediate, 
Zwitter ion, form is enzymatically active, but that the species to left and 
right are inactive. The concentration of intermediate goes through a 
maximum as the pH is varied so that the rate passes through a maximum. 

 

Applying steady state approximation for the above mechanism . 

At low substrate concentration 

 = 
[E0 ]K2[S ] 

  k [H + ]  Km 1 +   a  +  
 H + 

Kb  
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The pH behaviour can be explained by postulating that the intermediate, 
Zwitter ion, form is enzymatically active, but that the species to left and 
right are inactive. The concentration of intermediate goes through a 
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
m K 

m


 
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If we study the reaction at low pH 

[H + ] 
 

 

Kb 

 
is very high. 

Equation (1) becomes, r = 
k2[E0 ][S ] 

 H +  ------(2) 

NOTE K    
b   

r = 
k2kb [E0 ][S ] → (3)  

K  [H + ] 
 

Taking log for equation (3) 

log r = constant – log[H+] 

log r = Const + pH is at low pH . 

(ii)  At  intermediate  PH the km value cannot be neglected from 
equation (1) 

r = 
k2[E0 ][S ] 

Km 

 
---- (4) pH has no effect on rate 

(iii)  At high pH value the term ka/H+ is large in equation (1) 

r = 
K2[E0 ][S ] 

  k [H + ]  Km 1+   a   +  

 
r = 

K2[E0 ][S ] 
 

 
 
------ (4a) 

 H + 
Kb  

K 
ka 

m H + 
 

log r = Constant + logH+ 

log r = Constant – pH → (5) 
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In the graph AB has +ve slope satisfy the eqn (3a) 

BC is by equation (4) 

CD is by equation (5) 

At point B the eqn (3a) and (4) are equal 

k2[E0 ][S ] = 
k2[E0 ][S ] 

K  H + K 
m m 

 

[H+] = Kb 

pH = PKb 

At point ‘C’ the equation (4) and (4a) are equal 

k [E ][ S] k [E ][S][H + ] 
    2 0 =   2 0  

Km Kmka 

[H+] = Ka, PH  = pKa 

14.8 INFLUENCE OF TEMPERATURE 

At temperatures of 35°C or higher the enzyme may undergo 

Rapid deactivation during the course of a kinetic experiment and then low rate 
of transformation of a substrate is observed. 

Generally the rates of enzyme catalyzed reaction frequently pass 
through a maximum as the temperature is raised. The temperature at which the 
rate is maximum often referred to as the maximum temperature (optimum 
temperature). 

At low temperature no appreciable inactivation occurs or by making 
correction for the inactivation, it is possible to determine the effect of 
temperature on enzyme catalyzed reaction itself. 

r = 
k2[E0 ][S ] 

[s] + Km 

(i) At high concentration of [s] 

r = k2 [E0] 

− εa  

K2 = Ae RT , ln r = ln k2 + ln E0 

ln r = ln  AE  −  
Ea

 
0 RT 
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High the energy of activation lower the rate 

(ii) At low concentration of substrate 

r = 
k2 [E ][S ] 

 

0 

NOTE 

r =  
k1k2 

k−1 + k2 
[E0 ][S ] 

If K-1 >>K2 

r = 
k1k2 [E ][S ] 
k−1 

The energy of activation is now equal to E1 + E2 –E-1. 
 
 

14.9 Check Your Progress 
 

1. What is meant by Acid base catalyst? 
2. Explain PH effect. 

 

14.10 Answers To Check Your Progress Questions 
 

1. In acid-base catalysis, the chemical reaction is accelerated by the 
addition of an acid or a base, and the acid or base itself is not 
consumed in the reaction. ... Proton donors and acceptors, 
i.e. acids and base may donate and accept protons in order to 
stabilize developing charges in the transition state 

 
2.  Enzymes  are  affected  by  changes  in pH.  The   most  
favorable pH value - the point where the enzyme is most active - is 
known as the optimum pH. This is graphically illustrated in Figure 
14. Extremely high or low pH values generally result in complete 
loss of activity for most enzymes 
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14.11 Summary 
 

• General catalysis is indicated when 
the rate of the reaction depends upon the concentration of the 
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buffer as well as the pH of the solution, it is most likely to be observed when 
the pH of the solution is near the pKa of the buffer, and the reaction 
mechanism involves proton transfer in the rate-determining step. 
The PH effect causes polydentate complexes to be thermodynamically more 
stable than their monodentate counterpart 

14.12 Keywords 
Acid base catalysts: In acid-base catalysis, the chemical reaction is 
accelerated by the addition of an acid or a base, and the acid or base itself is 
not consumed in the reaction. .... Proton donors and acceptors, 
i.e. acids and base may donate and accept protons in order to stabilize 
developing charges in the transition state 
 
PH pH is a measure of hydrogen ion concentration, a measure of the acidity 
or alkalinity of a solution. The pH scale usually ranges from 0 to 14. 
Aqueous solutions at 25°C with a pH less than 7 are acidic, while those with 
a pH greater than 7 are basic or alkaline PH 

14.13 Self-assessment questions and exercises 
1. Discuss the influence of pH and temperature on enzyme catalyzed 
reactions. 
2. Discuss the effect of subsistent on reaction rates in terms of Hammett 
equation and Taft equation 
3. Discuss the effect of ionic strength on reaction rates. 

14.14 Further readings 
Shriver and Atkins., Physical Chemistry, 5th ed : W. H. Freeman and 
Company New York. 
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ALAGAPPA UNIVERSITY DISTANCE EDUCATION 
M.Sc. Degree Examination 

Advanced Physical chemistry (CBCS 2018 – 19 Academic year onwards) 
Time: Three hours Maximum: 75 marks 

 
SECTION A Answer All Questions 

 
1) What is simple definition of entropy? 

2) How is vibrational partition function calculated? 

3) What is difference between Fermi Dirac and Bose Eistein statistics? 

4) Write the wave equation formula. 

5) Explain the paulis exclusion principle. 

6) Give the two application of HMO method. 

7) Define point group. 

8) Define the reducible and irreducible representations. 

9) What is difference between primary and secondary salt effect. 

10) Mention the acid base catalysis. 

 
SECTION B Answer ALL questions, choosing either (a) or (b) 

 
11. (a)Write the short notes on negative absolute temperature. 
(or) 
(b) Mention the equilibrium constant from partition function. 

12. (a) Define the approximation and variation methods of quantum 
mechanical treatments. 
(or) 
(b) How will you find out the Bose Eistein Distribution law? 

 
 
 
 
 

(10 X2 = 20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(5 × 5 = 25) 
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13. (a) Write the short notes on HMO methods. 

(or) 
(b) What are character table of C2V and C3 V point groups. 

 
14. (a) Write the applications of group theory of electronic spectra. 

(or) 
(b) What are the factors affected in reaction rate of solutions? 

 
15. (a) Mention the Hammett and Taft equations. 

(or) 
(b) What is bronsted relation of acid-base catalysis reactions? 

 
 
 
 

SECTION C Answer any THREE questions (3 × 10 = 30) 

16) How is Boltzmann distribution calculated? 

17) How do solve the one dimensional wave equation? 

18) (a) predict the IR and NMR spectra of H2O and NH3 molecules. 

(b) Define point groups, and mention the classification of point 
groups. 

19) Explain the Bronsted Bjerrum equation. 

20) Explain the following 

a. Zuker Hammet equation 

b. Michaelis Menton Equation 

c. Lineweaver-Burke Equation. 
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